Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Pierre Héroux"'
Autor:
Maroua Mehri, Ramzi Chaieb, Karim Kalti, Pierre Héroux, Rémy Mullot, Najoua Essoukri Ben Amara
Publikováno v:
Journal of Imaging, Vol 4, Iss 8, p 97 (2018)
Recently, texture features have been widely used for historical document image analysis. However, few studies have focused exclusively on feature selection algorithms for historical document image analysis. Indeed, an important need has emerged to us
Externí odkaz:
https://doaj.org/article/995aee0fa9bb4ce8aee2e2deff64564a
Autor:
Sébastien Adam, Guillaume Hoffmann, Muhammet Balcilar, Benoit Gaüzère, Vincent Tognetti, Laurent Joubert, Pierre Héroux
Publikováno v:
Journal of Computational Chemistry. 41:2124-2136
Autor:
Muhammet Balcilar, Sébastien Adam, Paul Honeine, Pierre Héroux, Benoit Gaüzère, Guillaume Renton
Publikováno v:
Pattern Recognition Letters
Pattern Recognition Letters, Elsevier, 2021, ⟨10.1016/j.patrec.2021.09.020⟩
Pattern Recognition Letters, Elsevier, 2021, ⟨10.1016/j.patrec.2021.09.020⟩
International audience; In this paper, we propose a method to both extract and classify symbols in floorplan images. This method relies on the very recent developments of Graph Neural Networks (GNN). In the proposed approach, floorplan images are fir
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::77895fec2f0d104a1d5ec98f3f5a8f13
https://hal-normandie-univ.archives-ouvertes.fr/hal-03410511
https://hal-normandie-univ.archives-ouvertes.fr/hal-03410511
Autor:
Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, Paul Honeine
Publikováno v:
Proceedings of the International Conference on Learning Representations (ICLR)
Proceedings of the International Conference on Learning Representations (ICLR), May 2021, Vienna, Austria
HAL
Proceedings of the International Conference on Learning Representations (ICLR), May 2021, Vienna, Austria
HAL
International audience; In the recent literature of Graph Neural Networks (GNN), the expressive power of models has been studied through their capability to distinguish if two given graphs are isomorphic or not. Since the graph isomorphism problem is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::e745d87ca601e932bcbdcf3e73f9ebbc
https://hal-normandie-univ.archives-ouvertes.fr/hal-03135633
https://hal-normandie-univ.archives-ouvertes.fr/hal-03135633
Autor:
Muhammet, Balcilar, Guillaume, Renton, Pierre, Héroux, Benoit, Gaüzère, Sébastien, Adam, Honeine, Paul
Publikováno v:
Thirty-seventh International Conference on Machine Learning (ICML 2020)-Workshop on Graph Representation Learning and Beyond (GRL+ 2020)
Thirty-seventh International Conference on Machine Learning (ICML 2020)-Workshop on Graph Representation Learning and Beyond (GRL+ 2020), Jul 2020, Vienna, Austria
Thirty-seventh International Conference on Machine Learning (ICML 2020)-Workshop on Graph Representation Learning and Beyond (GRL+ 2020), Jul 2020, Vienna, Austria
International audience; Convolutional Graph Neural Networks (Con-vGNNs) are designed either in the spectral domain or in the spatial domain. In this paper, we provide a theoretical framework to analyze these neural networks, by deriving some equivale
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c8e772ee4bb089c1e20f45dcfbe673a9
https://hal-normandie-univ.archives-ouvertes.fr/hal-03088374
https://hal-normandie-univ.archives-ouvertes.fr/hal-03088374
Autor:
Anjan Dutta, Sébastien Adam, Jean-Marc Ogier, Muhammad Muzzamil Luqman, Christophe Rigaud, Pierre Héroux, Pasquale Foggia, Josep Lladós, Jean-Christophe Burie, Clément Guérin, Thanh-Nam Le
Publikováno v:
Pattern Recognition Letters
Pattern Recognition Letters, Elsevier, 2018, 112, pp.118-124. ⟨10.1016/j.patrec.2018.06.017⟩
Pattern Recognition Letters, Elsevier, 2018, 112, pp.118-124. ⟨10.1016/j.patrec.2018.06.017⟩
Graph-based representations are the most powerful data structures for extracting, representing and preserving the structural information of underlying data. Subgraph spotting is an interesting research problem, especially for studying and investigati
Publikováno v:
Pattern Recognition
Pattern Recognition, Elsevier, 2017, 72, pp.254-265. ⟨10.1016/j.patcog.2017.07.029⟩
Pattern Recognition, Elsevier, 2017, 72, pp.254-265. ⟨10.1016/j.patcog.2017.07.029⟩
International audience; Graph edit distance (GED) is a powerful and flexible graph matching paradigm that can be used to address different tasks in structural pattern recognition, machine learning, and data mining. In this paper, some new binary line
Autor:
Maroua Mehri, Pierre Héroux, Jean-Philippe Moreux, Bertrand Coüasnon, Rémy Mullot, Bill Barrett
Publikováno v:
15th International Conference on Document Analysis and Recognition
15th International Conference on Document Analysis and Recognition, Sep 2019, Sydney, Australia
ICDAR
15th International Conference on Document Analysis and Recognition, Sep 2019, Sydney, Australia
ICDAR
International audience; In this paper, we present an evaluative study of pixel-labeling methods using the HBA 1.0 dataset for historical book analysis. This study is held in the context of the 2 nd historical book analysis (HBA2019) competition and i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::baef903ce5317e4edd33db539cf41d7a
https://hal.science/hal-02490897/document
https://hal.science/hal-02490897/document
Publikováno v:
GREC@ICDAR
13th IAPR International Workshop on Graphics Recognition
13th IAPR International Workshop on Graphics Recognition, Sep 2019, Sydney, Australia
13th IAPR International Workshop on Graphics Recognition
13th IAPR International Workshop on Graphics Recognition, Sep 2019, Sydney, Australia
International audience; In this paper, we propose a new method to simultaneously detect and classify symbols in floorplan images. This method relies on the very recent developments of Graph Neural Networks (GNN). In the proposed approach, floorplan i
Publikováno v:
Pattern Recognition Letters
Pattern Recognition Letters, Elsevier, 2016, 71, pp.45-51. ⟨10.1016/j.patrec.2015.11.026⟩
Pattern Recognition Letters, Elsevier, 2016, 71, pp.45-51. ⟨10.1016/j.patrec.2015.11.026⟩
Minimum Cost Subgraph Matching (MCSM) is an adaptation of Graph Edit Distance.The paper proposes a Binary Linear Program that solves the MCSM problem.The proposed formulation is very general and can tackle a large range of graphs.MCSM is more efficie