Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Pierre Colombo"'
Autor:
Kaustubh Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahadiran, Simon Mille, Ashish Shrivastava, Samson Tan, null Tongshang Wu, Jascha Sohl-Dickstein, Jinho Choi, Eduard Hovy, Ondřej Dušek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honoré, Ishan Jindal, Przemysław Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard De Melo, Simon Meoni, Maxine Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Meunnighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicholas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos Samus, Ananya Sai, Robin Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib Shamsi, Xudong Shen, Yiwen Shi, Haoyue Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, Aditya Srivatsa, Tony Sun, Mukund Varma, A Tabassum, Fiona Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Zijie Wang, Gloria Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyu Wu, Witold Wydmanski, Tianbao Xie, Usama Yaseen, Michael Yee, Jing Zhang, Yue Zhang
Publikováno v:
Northern European Journal of Language Technology. 9
Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural lang
Autor:
Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven Le Scao, Leandro von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina Mcmillan-Major, Gérard Dupont, Stella Biderman, Anna Rogers, Loubna Ben Allal, Francesco de Toni, Giada Pistilli, Olivier Nguyen, Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Romero Muñoz, Jian Zhu, Daniel van Strien, Zaid Alyafeai, Khalid Almubarak, Vu Minh Chien, Itziar Gonzalez-Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Ifeoluwa Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilić, Margaret Mitchell, Sasha Luccioni, Yacine Jernite
Publikováno v:
HAL
As language models grow ever larger, the need for large-scale high-quality text datasets has never been more pressing, especially in multilingual settings. The BigScience workshop, a 1-year international and multidisciplinary initiative, was formed w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de4f6aa98013be0d5a61119e2bb20f3a
When working with textual data, a natural application of disentangled representations is fair classification where the goal is to make predictions without being biased (or influenced) by sensitive attributes that may be present in the data (e.g., age
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a0e8760ae201d8b5547690b63349455
http://arxiv.org/abs/2205.03589
http://arxiv.org/abs/2205.03589
Publikováno v:
ACL/IJCNLP (1)
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Learning disentangled representations of textual data is essential for many natural language tasks such as fair classification, style transfer and sentence generation, among others. The existent dominant approaches in the context of text data {either
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b641127f8212a529994a075c2feeef1c
Publikováno v:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
Publikováno v:
Proceedings of the AAAI Conference on Artificial Intelligence
Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (05), pp.7594-7601. ⟨10.1609/aaai.v34i05.6259⟩
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (05), pp.7594-7601. ⟨10.1609/aaai.v34i05.6259⟩
AAAI
The task of predicting dialog acts (DA) based on conversational dialog is a key component in the development of conversational agents. Accurately predicting DAs requires a precise modeling of both the conversation and the global tag dependencies. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5518c6fb6e291e095700556e5cd880fa
https://hal.archives-ouvertes.fr/hal-03134847
https://hal.archives-ouvertes.fr/hal-03134847
Publikováno v:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Nov 2020, Online, Dominican Republic. pp.7985-7993, ⟨10.18653/v1/2020.emnlp-main.641⟩
EMNLP (1)
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Nov 2020, Online, Dominican Republic. pp.7985-7993, ⟨10.18653/v1/2020.emnlp-main.641⟩
EMNLP (1)
While being an essential component of spoken language, fillers (e.g."um" or "uh") often remain overlooked in Spoken Language Understanding (SLU) tasks. We explore the possibility of representing them with deep contextualised embeddings, showing impro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::11f4a2b5a6b7ee34293e049558fb2561
Publikováno v:
2019 Conference on Empirical Methods in Natural Language Processing
2019 Conference on Empirical Methods in Natural Language Processing, Nov 2019, Hong-Kong, China
EMNLP/IJCNLP (1)
2019 Conference on Empirical Methods in Natural Language Processing, Nov 2019, Hong-Kong, China
EMNLP/IJCNLP (1)
The task of predicting fine grained user opinion based on spontaneous spoken language is a key problem arising in the development of Computational Agents as well as in the development of social network based opinion miners. Unfortunately, gathering r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::751c9414f2f3075dbedbd2ea76bc8f0b
https://hal.archives-ouvertes.fr/hal-02371140/file/1908.11216.pdf
https://hal.archives-ouvertes.fr/hal-02371140/file/1908.11216.pdf
Publikováno v:
NAACL-HLT (1)
Scopus-Elsevier
Scopus-Elsevier
The majority of current systems for end-to-end dialog generation focus on response quality without an explicit control over the affective content of the responses. In this paper, we present an affect-driven dialog system, which generates emotional re
Publikováno v:
WASSA@EMNLP
This paper describes our participating system in the WASSA 2018 shared task on emotion prediction. The task focuses on implicit emotion prediction in a tweet. In this task, keywords corresponding to the six emotion labels used (anger, fear, disgust,