Zobrazeno 1 - 10
of 146
pro vyhledávání: '"Pierre Boulet"'
Publikováno v:
Neuromorphic Computing and Engineering, Vol 4, Iss 3, p 034012 (2024)
Coastline detection is vital for coastal management, involving frequent observation and assessment to understand coastal dynamics and inform decisions on environmental protection. Continuous streaming of high-resolution images demands robust data pro
Externí odkaz:
https://doaj.org/article/bacf04a746ed4cdf9b29508f43d85ba7
Autor:
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, Johan Renaudie
Publikováno v:
Journal of Micropalaeontology
Journal of Micropalaeontology, 2022, 41 (2), pp.165-182. ⟨10.5194/jm-41-165-2022⟩
Journal of Micropalaeontology, 2022, 41 (2), pp.165-182. ⟨10.5194/jm-41-165-2022⟩
This study evaluates the application of artificial intelligence (AI) to the automatic classification of radiolarians and uses as an example eight distinct morphospecies of the Eocene radiolarian genus Podocyrtis, which are part of three different evo
Autor:
Pierre Boulet
Publikováno v:
2022 3rd International Conference on Embedded & Distributed Systems (EDiS).
Publikováno v:
Concurrency and Computation: Practice and Experience. 34
Neuromorphic architectures are one of the most promising architectures to significantly reduce the energy consumption of tomorrow’s computers. These architectures are inspired by the behaviour of the brain at a fairly precise level and consist of a
Publikováno v:
Scalable Computing: Practice and Experience. 21:309-321
The Network-on-Chip (NoC) is an alternative pattern that is considered as an emerging technology for distributed embedded systems. The traditional use of multi-cores in computing increase the calculation performance; but affect the network communicat
Publikováno v:
Content-Based Multimedia Indexing
Content-Based Multimedia Indexing, Jun 2021, Lille, France
CBMI
Content-Based Multimedia Indexing, Jun 2021, Lille, France
CBMI
International audience; Bio-inspired computing architectures enable ultralow power consumption and massive parallelism using neuromorphic computing, which is apt to implement Spiking Neural Networks (SNN). Such architectures are particularly suitable
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a7ee75dcc85d99690e3cf7112f09b6f
https://hal.archives-ouvertes.fr/hal-03267042
https://hal.archives-ouvertes.fr/hal-03267042
Publikováno v:
IEEE Transactions on Computers
IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2019, 68 (10), pp.1511-1524. ⟨10.1109/TC.2019.2909886⟩
IEEE Transactions on Computers, 2019, 68 (10), pp.1511-1524. ⟨10.1109/TC.2019.2909886⟩
IEEE Transactions on Computers, Institute of Electrical and Electronics Engineers, 2019, 68 (10), pp.1511-1524. ⟨10.1109/TC.2019.2909886⟩
IEEE Transactions on Computers, 2019, 68 (10), pp.1511-1524. ⟨10.1109/TC.2019.2909886⟩
Many task models have been proposed to express and analyze the behavior of real-time applications at different levels of precision. Most of them target sequential applications with no support for parallelism. The digraph task model is one of the most
Autor:
Pierre Boulet, Bouveret, S., Bugeau, A., Frenoux, E., Julien Lefevre, A-L, Ligozat, Kevin Marquet, Philippe Marquet, Olivier Michel, Ridoux, O.
Publikováno v:
[Rapport de recherche] EcoInfo. 2020
HAL
HAL
L’objectif de ce document est de définir un référentiel/socle de connaissances commun pour les enseignements sur le numérique responsable (impacts du numérique et comment les limiter1), à destination de formations en informatique ou d’autre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::77fdac21b23845fd912463ebf94d6d33
https://hal.science/hal-02954188/file/referentiel.pdf
https://hal.science/hal-02954188/file/referentiel.pdf
Publikováno v:
Springer Nature, Handbook of Memristor Networks
Springer Nature, Handbook of Memristor Networks, In press, 978-3-319-76375-0. ⟨10.1007/978-3-319-76375-0_25⟩
Springer Nature Switzerland AG
Handbook of Memristor Networks ISBN: 9783319763743
Handbook of Memristor Networks
Springer Nature, Handbook of Memristor Networks, In press, 978-3-319-76375-0. ⟨10.1007/978-3-319-76375-0_25⟩
Springer Nature Switzerland AG
Handbook of Memristor Networks ISBN: 9783319763743
Handbook of Memristor Networks
International audience; Abstract Neuromorphic computation using Spiking Neural Networks (SNN) is pro-posed as an alternative solution for future of computation to conquer the memorybottelneck issue in recent computer architecture. Different spike cod
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cca7f8c3092b41278da096763b529c65
https://hal.archives-ouvertes.fr/hal-02172472/file/Spiking_proved.pdf
https://hal.archives-ouvertes.fr/hal-02172472/file/Spiking_proved.pdf
Publikováno v:
Pattern Recognition
Pattern Recognition, Elsevier, 2019, 93, pp.418-429. ⟨10.1016/j.patcog.2019.04.016⟩
Pattern Recognition, 2019, 93, pp.418-429. ⟨10.1016/j.patcog.2019.04.016⟩
Pattern Recognition, Elsevier, 2019, 93, pp.418-429. ⟨10.1016/j.patcog.2019.04.016⟩
Pattern Recognition, 2019, 93, pp.418-429. ⟨10.1016/j.patcog.2019.04.016⟩
Spiking neural networks (SNNs) equipped with latency coding and spike-timing dependent plasticity rules offer an alternative to solve the data and energy bottlenecks of standard computer vision approaches: they can learn visual features without super
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b68a46f201fb3a28a7bc4d3cc3a65ff
https://hal.archives-ouvertes.fr/hal-02146284/file/S0031320319301621.pdf
https://hal.archives-ouvertes.fr/hal-02146284/file/S0031320319301621.pdf