Zobrazeno 1 - 10
of 136
pro vyhledávání: '"Pierpaolo Omari"'
Autor:
Pierpaolo Omari
Publikováno v:
Pierpaolo Omari
Autor:
Julián López-Gómez, Pierpaolo Omari
A refined version of the strong maximum principle is proven for a class of second order ordinary differential equations with possibly discontinuous non-monotone nonlinearities. Then, exploiting this tool, some optimal regularity results recently esta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b619aa649c3709bea6bd1b9c72e327f
http://arxiv.org/abs/2205.11936
http://arxiv.org/abs/2205.11936
Autor:
Pierpaolo Omari, Franco Obersnel
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 1185-1205 (2020)
This paper focuses on the existence and the multiplicity of classical radially symmetric solutions of the mean curvature problem:−div∇v1+|∇v|2=f(x,v,∇v)inΩ,a0v+a1∂v∂ν=0on∂Ω,\left\{\begin{array}{ll}-\text{div}\left(\frac{\nabla v}{\sq
Autor:
Pierpaolo Omari, Julián López-Gómez
This paper aims at proving the existence and the localization of an unbounded connected set of positive regular solutions ( λ , u ) of the quasilinear Neumann problem − ( u ′ / 1 + ( u ′ ) 2 ) ′ = λ a ( x ) f ( u ) , 0 x 1 , u ′ ( 0 ) = u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fae2e13a5d368e07c8852a03f5a64547
https://www.sciencedirect.com/science/article/pii/S0893965921004353
https://www.sciencedirect.com/science/article/pii/S0893965921004353
Autor:
Pierpaolo Omari, Fabio Zanolin
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 05, Pp 301-308 (2000)
We show that for each $lambda > 0$, the problem $-Delta_p u = lambda f(u)$ in $Omega$, $u = 0$ on $partial Omega$ has a sequence of positive solutions $(u_n)_n$ with $max_{Omega} u_n$ decreasing to zero. We assume that $displaystyle{liminf_{so0^+}fra
Externí odkaz:
https://doaj.org/article/4abe7233fe3d4e53a102772e6ccb10d8
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 1999, Iss 9, Pp 1-24 (1999)
We prove the solvability of the parabolic problem $$\partial_t u-\sum_{i,j=1}^N \partial_{x_i}(a_{i,j}(x,t)\partial_{x_j}u)+\sum_{i=1}^N b_i(x,t)\partial_{x_i}u=f(x,t,u)\hbox{ in }\Omega\times R$$ $$u(x,t)=0\hbox{ on }\partial\Omega\times R$$ $$u(x,t
Externí odkaz:
https://doaj.org/article/099c7b8050a34cdbabfc548f1e6b6d6f
Autor:
Pierpaolo Omari, Elisa Sovrano
This paper analyzes the superlinear indefinite prescribed mean curvature problem [Formula: see text] where [Formula: see text] is a bounded domain in [Formula: see text] with a regular boundary [Formula: see text], [Formula: see text] satisfies [Form
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4345ae40f77c5ae5b33e7af2ea743c11
https://hdl.handle.net/11380/1262553
https://hdl.handle.net/11380/1262553
Autor:
M. R. Grossinho, Pierpaolo Omari
Publikováno v:
Electronic Journal of Differential Equations, Vol 1997, Iss 08, Pp 1-16 (1997)
We prove the existence of infinitely many solutions for a class of quasilinear elliptic and parabolic equations, subject respectively to Dirichlet and Dirichlet-periodic boundary conditions. We assume that the primitive of the nonlinearity at the rig
Externí odkaz:
https://doaj.org/article/05cb6ab29c1a4e82adf28612c114afd5
Autor:
Pierpaolo Omari, Elisa Sovrano
This paper analyzes the quasilinear elliptic boundary value problem driven by the mean curvature operator − div ∇ u ∕ 1 + | ∇ u | 2 = λ a ( x ) f ( u ) in Ω , u = 0 on ∂ Ω , with the aim of understanding the effects of a flux-saturated d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a41774fc495188895d94e2661135c3fb
http://hdl.handle.net/11368/2963071
http://hdl.handle.net/11368/2963071
Autor:
Pierpaolo Omari, Franco Obersnel
We prove a result of Ambrosetti–Prodi type for the scalar periodic ODE x ′ = f ( t , x ) − s , where, seemingly for the first time in the literature, f ( ⋅ , x ) is allowed to have indefinite sign as | x | → + ∞ . Our result requires that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d5da20923104fefd08542f41e32a0c9f
https://www.sciencedirect.com/science/article/pii/S0893965920303037
https://www.sciencedirect.com/science/article/pii/S0893965920303037