Zobrazeno 1 - 10
of 114
pro vyhledávání: '"Pierpaolo Esposito"'
We consider the two-dimensional mean field equation of the equilibrium turbulence with variable intensities and Dirichlet boundary condition on a pierced domain $$\left\{ \begin{array}{ll} -\Delta u=\lambda_1\dfrac{V_1 e^{u}}{ \int_{\Omega_{\boldsymb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0876ef8b85b6cf4c23e9ee99470c72d2
http://hdl.handle.net/11573/1466917
http://hdl.handle.net/11573/1466917
Autor:
Pierpaolo Esposito
In dimension n isolated singularities -- at a finite point or at infinity -- for solutions of finite total mass to the n-Liouville equation are of logarithmic type. As a consequence, we simplify the classification argument in arXiv:1609.03608 and est
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d54074864d916454e7cc81f40de4632
We consider the following perturbed critical Dirichlet problem involving the Hardy-Schr\"odinger operator on a smooth bounded domain $\Omega \subset \mathbb{R}^N$, $N\geq 3$, with $0 \in \Omega$: $$ \left\{ \begin{array}{ll}-\Delta u-\gamma \frac{u}{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed9e3bcbf2655497c8f45d366572d011
http://arxiv.org/abs/1709.04888
http://arxiv.org/abs/1709.04888
Autor:
Teresa D'Aprile, Pierpaolo Esposito
We discuss the existence of equilibrium configurations for the Hamiltonian point-vortex model on a closed surface $\Sigma$. The topological properties of $\Sigma$ determine the occurrence of three distinct situations, corresponding to $\mathbb{S}^2$,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::60ba74671fdee2cde92c6d69f2c5c3ec
https://hdl.handle.net/11590/313987
https://hdl.handle.net/11590/313987
Publikováno v:
Communications on Pure and Applied Analysis. 11:1935-1957
\noindent For the Dirichlet problem $-\Delta u+\lambda V(x) u=u^p$ in $\Omega \subset \mathbb R^N$, $N\geq 3$, in the regime $\lambda \to +\infty$ we aim to give a description of the blow-up mechanism. For solutions with symmetries an uniform bound o
Publikováno v:
ResearcherID
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
We establish nondegeneracy of the explicit family of finite mass solutions of the Liouvillle equation with a singular source of integer multiplicity, in the sense that all bounded elements in the kernel of the linearization correspond to variations a
Publikováno v:
Archive for Rational Mechanics and Analysis. 198:763-787
We study the regularity of the extremal solution of the semilinear biharmonic equation $\bi u=\f{\lambda}{(1-u)^2}$, which models a simple Micro-Electromechanical System (MEMS) device on a ball $B\subset\IR^N$, under Dirichlet boundary conditions $u=
Autor:
Pierpaolo Esposito
Publikováno v:
Communications in Contemporary Mathematics. 10:17-45
We study the Dirichlet boundary value problem [Formula: see text] on a bounded domain Ω ⊂ ℝN. For 2 ≤ N ≤ 7, we characterize compactness for solutions sequence in terms of spectral informations. As a by-product, we give an uniqueness result
Autor:
Nassif Ghoussoub, Pierpaolo Esposito
Publikováno v:
Methods Appl. Anal. 15, no. 3 (2008), 341-354
We study the effect of the parameter $\lambda$, the dimension $N$, the profile $f$ and the geometry of the domain $\Omega \subset\mathbb{R}^N$, on the question of uniqueness of the solutions to the following elliptic boundary value problem with a sin
Autor:
Pierpaolo Esposito
Entire solutions of the $n-$Laplace Liouville equation in $\mathbb{R}^n$ with finite mass are completely classified.
Comment: 15 pages
Comment: 15 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1f804a1a0b4a4d9908fb187b04c94e02