Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Pierluigi Benevieri"'
Publikováno v:
Mathematics, Vol 9, Iss 5, p 561 (2021)
We study the persistence of eigenvalues and eigenvectors of perturbed eigenvalue problems in Hilbert spaces. We assume that the unperturbed problem has a nontrivial kernel of odd dimension and we prove a Rabinowitz-type global continuation result. Th
Externí odkaz:
https://doaj.org/article/e07324b97bc94c6f8f290acf6a69c7fe
Publikováno v:
Electronic Journal of Differential Equations, Vol 2007, Iss 62, Pp 1-5 (2007)
We prove an existence result for $T$-periodic solutions of a $T$-periodic second order delay differential equation on a boundaryless compact manifold with nonzero Euler-Poincare characteristic. The approach is based on an existence result recently ob
Externí odkaz:
https://doaj.org/article/375e3866e52246d5a1c9c89806503f73
Publikováno v:
Fixed Point Theory and Applications, Vol 2005, Iss 2, Pp 185-206 (2005)
We define a notion of degree for a class of perturbations of nonlinear Fredholm maps of index zero between infinite-dimensional real Banach spaces. Our notion extends the degree introduced by Nussbaum for locally α-contractive perturbations of
Externí odkaz:
https://doaj.org/article/e891a1b05b1e4f15a9351c106cd995ad
Publikováno v:
Electronic Journal of Differential Equations, Vol 2004, Iss 128, Pp 1-14 (2004)
We prove a generalization of a theorem proved by Seifert and Fuller concerning the existence of periodic orbits of vector fields via the averaging method. Also we show applications of these results to Kepler motion and to geodesic flows on spheres.
Externí odkaz:
https://doaj.org/article/22c8904da9204297ba03c4ff83c0150f
Publikováno v:
Fixed Point Theory and Applications, Vol 2008 (2008)
We prove a global bifurcation result for an equation of the type Lx+λ(h(x)+k(x))=0, where L:E  →  F is a linear Fredholm operator of index zero between Banach spaces, and, given
Externí odkaz:
https://doaj.org/article/7cbc2e1423404d02aadbff13248c43b8
Publikováno v:
Fixed Point Theory and Applications, Vol 2006 (2006)
In a recent paper we gave a notion of degree for a class of perturbations of nonlinear Fredholm maps of index zero between real infinite dimensional Banach spaces. Our purpose here is to extend that notion in order to include the degree introduced by
Externí odkaz:
https://doaj.org/article/bfe6799cfc6c4c7f902b83249666119d
Autor:
Pierluigi Benevieri, Massimo Furi
Publikováno v:
Abstract and Applied Analysis, Vol 2006 (2006)
We present an integer valued degree theory for locally compact perturbations of Fredholm maps of index zero between (open sets in) Banach spaces (quasi-Fredholm maps, for short). The construction is based on the Brouwer degree theory and on the notio
Externí odkaz:
https://doaj.org/article/61d5b15e59694cf8842d5ca1cad2366e
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We consider the nonlinear eigenvalue problem $Lx + \varepsilon N(x) = \lambda Cx$, $\|x\|=1$, where $\varepsilon,\lambda$ are real parameters, $L, C\colon G \to H$ are bounded linear operators between separable real Hilbert spaces, and $N\colon S \to
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We extend to the infinite dimensional context the link between two completely different topics recently highlighted by the authors: the classical eigenvalue problem for real square matrices and the Brouwer degree for maps between oriented finite dime
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c2a17d391e3d727745bf353976734300
Autor:
Pablo Amster, Pierluigi Benevieri
This volume explores the application of topological techniques in the study of delay and ordinary differential equations with a particular focus on continuum mechanics. Chapters, written by internationally recognized researchers in the field, present