Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Pierfrancesco Urbani"'
Autor:
Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala, Pierfrancesco Urbani, Lenka Zdeborová
Publikováno v:
Physical Review X, Vol 10, Iss 1, p 011057 (2020)
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in p
Externí odkaz:
https://doaj.org/article/5be1ae79a5f941e3bce7b8ede2ac53b1
Publikováno v:
Physical Review X, Vol 9, Iss 1, p 011020 (2019)
An algorithmically hard phase is described in a range of inference problems: Even if the signal can be reconstructed with a small error from an information-theoretic point of view, known algorithms fail unless the noise-to-signal ratio is sufficientl
Externí odkaz:
https://doaj.org/article/31c6a61f0b4a45fa90a1ea8691e55b9d
Publikováno v:
SciPost Physics, Vol 15, Iss 5, p 219 (2023)
We consider a recently proposed model to understand the rigidity transition in confluent tissues and we derive the dynamical mean field theory (DMFT) equations that describes several types of dynamics of the model in the thermodynamic limit: gradient
Externí odkaz:
https://doaj.org/article/021163aa56ec4434b029386de6d1c1d0
Publikováno v:
SciPost Physics, Vol 9, Iss 1, p 012 (2020)
We show that soft spheres interacting with a linear ramp potential when overcompressed beyond the jamming point fall in an amorphous solid phase which is critical, mechanically marginally stable and share many features with the jamming point itsel
Externí odkaz:
https://doaj.org/article/a0aa44a7a5a54a3fbd9286a2fa128644
Autor:
Pierfrancesco Urbani
Models of confluent tissues are built out of tessellations of the space (both in two and three dimensions) in which the cost function is constructed in such a way that individual cells try to optimize their volume and surface in order to reach a targ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06cd6d38951ef42136a1d4f2f33875b4
Autor:
Pierfrancesco Urbani
Publikováno v:
Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, 2022, 55 (33), pp.335002. ⟨10.1088/1751-8121/ac8088⟩
Journal of Physics A: Mathematical and Theoretical, 2022, 55 (33), pp.335002. ⟨10.1088/1751-8121/ac8088⟩
We introduce a finite dimensional anharmonic soft spin glass in a field and show how it allows the construction a field theory at zero temperature and the corresponding loop expansion. The mean field level of the model coincides with a recently intro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::42e3ecd211d015c80e53ce28e2880f47
Publikováno v:
SciPost Physics, Vol 4, Iss 4, p 020 (2018)
We study Harmonic Soft Spheres as a model of thermal structural glasses in the limit of infinite dimensions. We show that cooling, compressing and shearing a glass lead to a Gardner transition and, hence, to a marginally stable amorphous solid as
Externí odkaz:
https://doaj.org/article/dfe5224b37e54b889da1043b964f2a2e
Autor:
Pierfrancesco Urbani
Publikováno v:
Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2021, 54 (32), pp.324001. ⟨10.1088/1751-8121/ac0645⟩
Journal of Physics A: Mathematical and Theoretical, 2021, 54 (32), pp.324001. ⟨10.1088/1751-8121/ac0645⟩
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2021, 54 (32), pp.324001. ⟨10.1088/1751-8121/ac0645⟩
Journal of Physics A: Mathematical and Theoretical, 2021, 54 (32), pp.324001. ⟨10.1088/1751-8121/ac0645⟩
Mean field optimal control problems are a class of optimization problems that arise from optimal control when applied to the many body setting. In the noisy case one has a set of controllable stochastic processes and a cost function that is a functio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c7be38c6a416b07222a01a44b3289eb
https://hal.archives-ouvertes.fr/hal-03431743
https://hal.archives-ouvertes.fr/hal-03431743
Publikováno v:
SciPost Physics, Vol 2, Iss 3, p 019 (2017)
Random constraint satisfaction problems (CSP) have been studied extensively using statistical physics techniques. They provide a benchmark to study average case scenarios instead of the worst case one. The interplay between statistical physics of
Externí odkaz:
https://doaj.org/article/bf4f155770ca43d8a3af3403ee762af6
Publikováno v:
Physical Review B, 103(17):174202. American Institute of Physics
Physical Review B
Physical Review B, 2021, 103, pp.174202. ⟨10.1103/PhysRevB.103.174202⟩
Physical Review B, American Physical Society, 2021, 103, pp.174202. ⟨10.1103/PhysRevB.103.174202⟩
Physical Review B
Physical Review B, 2021, 103, pp.174202. ⟨10.1103/PhysRevB.103.174202⟩
Physical Review B, American Physical Society, 2021, 103, pp.174202. ⟨10.1103/PhysRevB.103.174202⟩
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $\mathcal{D}(\omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02bc91b005ee3db70a8852a4fe541ac8
https://dare.uva.nl/personal/pure/en/publications/lowfrequency-vibrational-spectrum-of-meanfield-disordered-systems(5b2ee7c9-819a-4e4c-b91e-c96a2fbbd7c4).html
https://dare.uva.nl/personal/pure/en/publications/lowfrequency-vibrational-spectrum-of-meanfield-disordered-systems(5b2ee7c9-819a-4e4c-b91e-c96a2fbbd7c4).html