Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Pier Vincenzo Petricca"'
Autor:
Patrizia Di Gironimo, Salvatore Leonardi, Francesco Leonetti, Marta Macrì, Pier Vincenzo Petricca
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 3, Pp 1-23 (2023)
We prove the existence of a solution to a quasilinear system of degenerate equations, when the datum is in a Marcinkiewicz space. The main assumption asks the off-diagonal coefficients to have support in the union of a geometric progression of square
Externí odkaz:
https://doaj.org/article/c9b9cf3e25a545aba57172e8a4b075ba
In the framework of nonlinear elasticity, we consider the model energy F ( u ) = ∫ Ω [ | D u ( x ) | p + h ( det D u ( x ) ) ] d x , where u : Ω ⊂ R n → R n with det D u > 0 and h : ( 0 , + ∞ ) → [ 0 , + ∞ ) is convex; moreover
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fe5027f7f12936657c78b85cbea82133
http://hdl.handle.net/11697/171494
http://hdl.handle.net/11697/171494
Publikováno v:
Applicable Analysis. 99:496-507
We deal with maps u:Ω⊂Rn→Rn minimizing variational integrals ∫Ω[|Du(x)|p+h(detDu(x))]dx, where 2≤p
Publikováno v:
Advances in Nonlinear Analysis, Vol 8, Iss 1, Pp 73-78 (2016)
We consider non-autonomous functionals of the form {\mathcal{F}(u,\hskip-0.569055pt\Omega)\hskip-0.853583pt=\hskip-0.853583pt\int% _{\Omega}f(x,\hskip-0.569055ptDu(x))\hskip-0.569055pt\,dx} , where {u\colon\kern-0.711319pt\Omega\hskip-0.569055pt\to\h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee7b64d1ec6c3e0d270cd6ca066cda38
http://hdl.handle.net/11697/132917
http://hdl.handle.net/11697/132917
Publikováno v:
Ricerche di Matematica. 63:157-168
Publikováno v:
Rendiconti Lincei - Matematica e Applicazioni. :115-136
Publikováno v:
Complex Variables and Elliptic Equations. 58:221-230
We prove pointwise bounds for minimizers of some relaxed functionals A model for ℱ(u) is given by where u : Ω ⊂ ℝ n → ℝ n and h : ℝ → [0, +∞) is convex with 2 ≤ p
Publikováno v:
Discrete & Continuous Dynamical Systems - B. 11:191-203
We prove existence of bounded weak solutions $u: \Omega \subset \R^{n} \to \R^{N}$ for the Dirichlet problem -div $( a(x, u(x), Du(x) ) ) = f(x),$ $ x \in \Omega$; $u(x) = 0, $ $ x \in \partial\Omega$ where $\Omega$ is a bounded open set, $a$ is a su
We deal with variational integrals ∫ Ω f ( x , D u ( x ) ) d x and we consider a minimizer u : Ω ⊂ R n → R among all functions that agree on the boundary ∂ Ω with some fixed boundary value u ∗ . We assume that the boundary datum u ∗ ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6400c32c8ce801953f4cd119ed28531
http://hdl.handle.net/11697/98839
http://hdl.handle.net/11697/98839
We prove local regularity in Lebesgue spaces for weak solutions $$u$$ of quasilinear elliptic systems whose off-diagonal coefficients are small when $$|u|$$ is large: the faster off-diagonal coefficients decay, the higher integrability of $$u$$ becom
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31188719d9f222cf87366a74cc1090d6
http://hdl.handle.net/11697/16273
http://hdl.handle.net/11697/16273