Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Pichao Wang"'
Publikováno v:
IEEE Access, Vol 6, Pp 2206-2219 (2018)
This paper presents an effective yet simple video representation for RGB-D-based action recognition. It proposes to represent a depth map sequence into three pairs of structured dynamic images (DIs) at body, part, and joint levels, respectively, thro
Externí odkaz:
https://doaj.org/article/0e49e02ddf4e4a7490510e948de7e0f8
Publikováno v:
Sensors, Vol 20, Iss 11, p 3305 (2020)
The paper presents a novel hybrid network for large-scale action recognition from multiple modalities. The network is built upon the proposed weighted dynamic images. It effectively leverages the strengths of the emerging Convolutional Neural Network
Externí odkaz:
https://doaj.org/article/6098b16a1f3e498cb2709e22eae7512f
Publikováno v:
Sensors, Vol 13, Iss 1, Pp 746-757 (2013)
In this paper, a novel direction of arrival (DOA) estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC) algorithm is proposed through combining a fast MUSIC-like algorithm termed the modifi
Externí odkaz:
https://doaj.org/article/5663940fcaa74ceeaa2d8a2226001671
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence. :1-15
Publikováno v:
IEEE Transactions on Circuits and Systems for Video Technology. 32:8165-8178
Recent progress in video object detection (VOD) has shown that aggregating features from other frames to capture long-range contextual information is very important to deal with the challenges in VOD, such as partial occlusion, motion blur, etc. To e
Publikováno v:
Neural Computing and Applications. 35:2007-2024
Publikováno v:
Pattern Recognition. 141:109631
Autor:
Zhimin Gao, Peitao Wang, Pei Lv, Xiaoheng Jiang, Qidong Liu, Pichao Wang, Mingliang Xu, Wanqing Li
Publikováno v:
Computer Vision – ACCV 2022 ISBN: 9783031263156
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::323361cf6fad307dc15fd9dabf9a9412
https://doi.org/10.1007/978-3-031-26316-3_10
https://doi.org/10.1007/978-3-031-26316-3_10
Publikováno v:
International Journal of Computer Vision. 129:2927-2946
Aggregating temporal features from other frames is verified to be very effective for video object detection to overcome the challenges in still images, such as occlusion, motion blur, and rare pose. Currently, proposal-level feature aggregation domin