Zobrazeno 1 - 10
of 115
pro vyhledávání: '"Piccioni, Mauro"'
Autor:
Piccioni, Mauro, Wesołowski, Jacek
In this paper the relations between independence preserving (IP) involutions and reversible Markov kernels are investigated. We introduce an involutive augmentation H = (f, g_f) of a measurable function f and relate the IP property of H to f-generate
Externí odkaz:
http://arxiv.org/abs/2408.08646
Autor:
Macci, Claudio, Piccioni, Mauro
We prove the large deviation principle (LDP) for posterior distributions arising from subfamilies of full exponential families, allowing misspecification of the model. Moreover, motivated by the so-called inverse Sanov Theorem (see e.g. Ganesh and O'
Externí odkaz:
http://arxiv.org/abs/2111.14152
We address the questions of identifying pairs of interacting neurons from the observation of their spiking activity. The neuronal network is modeled by a system of interacting point processes with memory of variable length. The influence of a neuron
Externí odkaz:
http://arxiv.org/abs/2106.07529
Autor:
De Santis, Emilio, Piccioni, Mauro
This paper considers a random structure on the lattice $\mathbb{Z}^2$ of the following kind. To each edge $e$ a random variable $X_e$ is assigned, together with a random sign $Y_e \in \{-1,+1\}$. For an infinite self-avoiding path on $\mathbb{Z}^2$ s
Externí odkaz:
http://arxiv.org/abs/1906.02048
Autor:
Macci, Claudio, Piccioni, Mauro
Publikováno v:
In Journal of Statistical Planning and Inference May 2023 224:54-68
Let $P_0$ be a probability on the real line generating a natural exponential family $(P_t)_{t\in \mathbb {R}}$. Fix $\alpha$ in $ (0,1).$ We show that the property that $P_t((-\infty,t)) \leq \alpha \leq P_t((-\infty,t])$ for all $t$ implies that the
Externí odkaz:
http://arxiv.org/abs/1810.11917
Let $P$ a probability on the real line generating a natural exponential family $(P_t)_{t\in \R}$. We show that $t$ is a median of $P_t$ for all $t$ only if $P$ is the standard Gaussian law $N(0.1).$ The proof is based on the Choquet Deny equation.
Externí odkaz:
http://arxiv.org/abs/1708.03789
Autor:
Letac, Gerard, Piccioni, Mauro
Consider $G=SL_2(\mathbb{Z})/\{\pm I\}$ acting on the complex upper half plane $H$ by $h_M(z)=\frac{az+b}{cz+d},$ for $M \in G$. Let $D=\{z \in H: |z|\geq 1, |\Re(z)|\leq 1/2\}$. We consider the set $\mathcal{E} \subset G$ with the $9$ elements $M$,
Externí odkaz:
http://arxiv.org/abs/1708.02506
Autor:
De Santis, Emilio, Piccioni, Mauro
In this paper we study stochastic process indexed by $\mathbb {Z}$ constructed from certain transition kernels depending on the whole past. These kernels prescribe that, at any time, the current state is selected by looking only at a previous random
Externí odkaz:
http://arxiv.org/abs/1508.00867
Autor:
Letac, Gerard, Piccioni, Mauro
If $\alpha$ is a probability on $\mathbb{R}^d$ and $t>0,$ consider the Dirichlet random probability $P_t\sim\mathcal{D}(t\alpha) ;$ it is such that for any measurable partition $(A_0,\ldots,A_k)$ of $\mathbb{R}^d$ then $(P_t(A_0),\ldots,P_t(A_k))$ is
Externí odkaz:
http://arxiv.org/abs/1405.4744