Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Physics-constrained learning"'
Modeling the dynamics of flexible objects has become an emerging topic in the community as these objects become more present in many applications, e.g., soft robotics. Due to the properties of flexible materials, the movements of soft objects are oft
Externí odkaz:
http://arxiv.org/abs/2406.11809
A data-driven model augmentation framework, referred to as Weakly-coupled Integrated Inference and Machine Learning (IIML), is presented to improve the predictive accuracy of physical models. In contrast to parameter calibration, this work seeks corr
Externí odkaz:
http://arxiv.org/abs/2207.10819
We propose a novel approach to model viscoelasticity materials using neural networks, which capture rate-dependent and nonlinear constitutive relations. However, inputs and outputs of the neural networks are not directly observable, and therefore com
Externí odkaz:
http://arxiv.org/abs/2005.04384
Autor:
Srivastava, Vishal1 (AUTHOR) vsriv@umich.edu, Sulzer, Valentin2 (AUTHOR), Mohtat, Peyman2 (AUTHOR), Siegel, Jason B.2 (AUTHOR), Duraisamy, Karthik1 (AUTHOR)
Publikováno v:
Computational Mechanics. Aug2023, Vol. 72 Issue 2, p411-430. 20p.
Autor:
Xu, Kailai, Darve, Eric
Deep neural networks (DNN) have been used to model nonlinear relations between physical quantities. Those DNNs are embedded in physical systems described by partial differential equations (PDE) and trained by minimizing a loss function that measures
Externí odkaz:
http://arxiv.org/abs/2002.10521
Autor:
Xu, Kailai, Darve, Eric
Publikováno v:
In Journal of Computational Physics 15 March 2022 453
Publikováno v:
In IFAC PapersOnLine 2022 55(7):79-85
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IFAC-PapersOnLine. 55:79-85