Zobrazeno 1 - 10
of 215
pro vyhledávání: '"Phillips Derek"'
Autor:
Bhattacharyya, Raunak, Wulfe, Blake, Phillips, Derek, Kuefler, Alex, Morton, Jeremy, Senanayake, Ransalu, Kochenderfer, Mykel
An open problem in autonomous vehicle safety validation is building reliable models of human driving behavior in simulation. This work presents an approach to learn neural driving policies from real world driving demonstration data. We model human dr
Externí odkaz:
http://arxiv.org/abs/2006.06412
Publikováno v:
BMC Bioinformatics, Vol 7, Iss 1, p 29 (2006)
Abstract Background The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n3) algorithm upon which all existing implementations are based.
Externí odkaz:
https://doaj.org/article/4990b600708a44df90d4d07ae961704d
Autor:
Bhattacharyya, Raunak P., Phillips, Derek J., Liu, Changliu, Gupta, Jayesh K., Driggs-Campbell, Katherine, Kochenderfer, Mykel J.
Recent developments in multi-agent imitation learning have shown promising results for modeling the behavior of human drivers. However, it is challenging to capture emergent traffic behaviors that are observed in real-world datasets. Such behaviors a
Externí odkaz:
http://arxiv.org/abs/1903.05766
Autor:
Phillips, Derek J., Aragon, Juan Carlos, Roychowdhury, Anjali, Madigan, Regina, Chintakindi, Sunil, Kochenderfer, Mykel J.
Many automotive applications, such as Advanced Driver Assistance Systems (ADAS) for collision avoidance and warnings, require estimating the future automotive risk of a driving scene. We present a low-cost system that predicts the collision risk over
Externí odkaz:
http://arxiv.org/abs/1902.01293
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bhattacharyya, Raunak P., Phillips, Derek J., Wulfe, Blake, Morton, Jeremy, Kuefler, Alex, Kochenderfer, Mykel J.
Simulation is an appealing option for validating the safety of autonomous vehicles. Generative Adversarial Imitation Learning (GAIL) has recently been shown to learn representative human driver models. These human driver models were learned through t
Externí odkaz:
http://arxiv.org/abs/1803.01044
Autor:
Zhuo, Wang, Lundquist, Adam J., Donahue, Erin K., Guo, Yumei, Phillips, Derek, Petzinger, Giselle M., Jakowec, Michael W., Holschneider, Daniel P.
Publikováno v:
In Current Research in Neurobiology 2022 3