Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Phillipo Lappicy"'
Autor:
Jia-Yuan Dai, Phillipo Lappicy
Publikováno v:
SIAM Journal on Applied Dynamical Systems. 20:1959-1984
This paper consists of three results on pattern formation of Ginzburg-Landau $m$-armed vortex solutions and spiral waves in circular and spherical geometries. First, we completely describe the global bifurcation diagram of vortex equilibria. Second,
We consider spatially homogeneous Ho\v{r}ava-Lifshitz (HL) models that perturb General Relativity (GR) by a parameter $v\in (0,1)$ such that GR occurs at $v=1/2$. We describe the dynamics for the extremal case $v=0$, which possess the usual Bianchi h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78e9ea20b09a76081b9073401fbd16c8
http://arxiv.org/abs/2203.03763
http://arxiv.org/abs/2203.03763
Autor:
Phillipo Lappicy
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The goal of this paper is to study how the symmetry of the spherical domain influences solutions of elliptic equations on such domain. The method pursued is a variant of the moving plane method, discovered by Alexandrov (1962) and used for differenti
Autor:
Phillipo Lappicy, Juliana Pimentel
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Autor:
Phillipo Lappicy
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We explicitly construct global attractors of fully nonlinear parabolic equations. The attractors are decomposed as equilibria (time independent solutions) and heteroclinic orbits (solutions that converge to distinct equilibria backwards and forwards
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b7e8c60b0b83040c5ad5bebbc9b4afa
http://arxiv.org/abs/2105.08241
http://arxiv.org/abs/2105.08241
Autor:
Phillipo Lappicy, Victor Hugo Daniel
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We consider spatially homogeneous models in Ho\v{r}ava-Lifshitz (HL) gravity that perturbs General Relativity (GR) by a parameter $v\in (0,1)$ such that GR occurs at $v=1/2$. We prove that the induced Kasner map is chaotic for a broad class of modifi
Autor:
Phillipo Lappicy
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The goal of this paper is to construct explicitly the global attractors of parabolic equations with singular diffusion coefficients on the boundary, as it was done without the singular term for the semilinear case by Brunovsk'y and Fiedler (1986), ge
Autor:
Phillipo Lappicy
Publikováno v:
Physical Review D. 99
The Einstein constraint equations describe the space of initial data for the evolution equations, dictating how space should curve within spacetime. Under certain assumptions, the constraints reduce to a scalar quasilinear parabolic equation on the s
Autor:
Phillipo Lappicy
The goal of this paper is to construct explicitly the global attractors of quasilinear parabolic equations, as it was done for the semilinear case by Brunovsk\'y and Fiedler (1986), and generalized by Fiedler and Rocha (1996). In particular, we const
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::100e25d74360b573650848828a396358
http://arxiv.org/abs/1805.00589
http://arxiv.org/abs/1805.00589
Autor:
Bernold Fiedler, Phillipo Lappicy
Lyapunov functions are used to prove stability of equilibria, or to indicate a gradient-like structure of a dynamical system. Zelenyak (1968) and Matano (1988) constructed a Lyapunov function for quasilinear parabolic equations. We modify Matano's me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ea0f1a4bbe043975219845e07532b3f6
http://arxiv.org/abs/1802.09754
http://arxiv.org/abs/1802.09754