Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Philippe Di Francesco"'
Publikováno v:
Nuclear Physics B, Vol 987, Iss , Pp 116084- (2023)
We evaluate the configuration exponents of various ensembles of Hamiltonian paths drawn on random planar bicubic maps. These exponents are estimated from the extrapolations of exact enumeration results for finite sizes and compared with their theoret
Externí odkaz:
https://doaj.org/article/16dc649aee8046ddae64a2680515cb8e
Autor:
Philippe Di Francesco, Rinat Kedem
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 014 (2010)
In the first part of this paper, we provide a concise review of our method of solution of the A_r Q-systems in terms of the partition function of paths on a weighted graph. In the second part, we show that it is possible to modify the graphs and tran
Externí odkaz:
https://doaj.org/article/2bcf08ba4acd4bd9a9b7201221b1188a
Autor:
Philippe Di Francesco
Publikováno v:
The Electronic Journal of Combinatorics. 28
We show that the number of configurations of the 20 Vertex model on certain domains with domain wall type boundary conditions is equal to the number of domino tilings of Aztec-like triangles, proving a conjecture from [P. Di Francesco and E. Guitter,
Autor:
Philippe Di Francesco, Rinat Kedem
Publikováno v:
Communications in Mathematical Physics. 369:867-928
We introduce the natural (t, q)-deformation of the Q-system algebra in type A. The q-Whittaker limit $$t\rightarrow \infty $$ gives the quantum Q-system algebra of Di Francesco and Kedem (Lett Math Phys 107(2):301–341, [DFK17]), a deformation of th
Publikováno v:
The Electronic Journal of Combinatorics
The Electronic Journal of Combinatorics, Open Journal Systems, 2020, 27 (2), pp.P2.13. ⟨10.37236/8809⟩
The Electronic Journal of Combinatorics, 2020, 27 (2), pp.P2.13. ⟨10.37236/8809⟩
The Electronic Journal of Combinatorics, Open Journal Systems, 2020, 27 (2), pp.P2.13. ⟨10.37236/8809⟩
The Electronic Journal of Combinatorics, 2020, 27 (2), pp.P2.13. ⟨10.37236/8809⟩
We consider the triangular lattice ice model (20-Vertex model) with four types of domain-wall type boundary conditions. In types 1 and 2, the configurations are shown to be equinumerous to the quarter-turn symmetric domino tilings of an Aztec-like ho
Autor:
Philippe Di Francesco
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 54:355201
We apply the Tangent Method of Colomo and Sportiello to predict the arctic curves of the Six Vertex model with reflecting (U-turn) boundary and of the related Twenty Vertex model with suitable domain wall boundary conditions on a quadrangle, both in
Publikováno v:
Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, 2020, 179, pp.33-89. ⟨10.1007/s10955-020-02518-y⟩
Journal of Statistical Physics, 2020, 179, pp.33-89. ⟨10.1007/s10955-020-02518-y⟩
Journal of Statistical Physics, Springer Verlag, 2020, 179, pp.33-89. ⟨10.1007/s10955-020-02518-y⟩
Journal of Statistical Physics, 2020, 179, pp.33-89. ⟨10.1007/s10955-020-02518-y⟩
We use the tangent method to compute the arctic curve of the Twenty-Vertex (20V) model with particular domain wall boundary conditions for a wide set of integrable weights. To this end, we extend to the finite geometry of domain wall boundary conditi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9460859c7a7c384e69685036273472dc
http://arxiv.org/abs/1910.06833
http://arxiv.org/abs/1910.06833
Publikováno v:
Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, 2019, 52 (11), pp.115205. ⟨10.1088/1751-8121/ab03ff⟩
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2019, 52 (11), pp.115205. ⟨10.1088/1751-8121/ab03ff⟩
Journal of Physics A: Mathematical and Theoretical, 2019, 52 (11), pp.115205. ⟨10.1088/1751-8121/ab03ff⟩
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2019, 52 (11), pp.115205. ⟨10.1088/1751-8121/ab03ff⟩
We use a tangent method approach to obtain the arctic curve in a model of non-intersecting lattice paths within the first quadrant, including a q-dependent weight associated with the area delimited by the paths. Our model is characterized by an arbit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19498511bfe8941ff5e9d819f458e68a
https://cea.hal.science/cea-02932285/document
https://cea.hal.science/cea-02932285/document
The Tangent Method of Colomo and Sportiello is applied to the study of the asymptotics of domino tilings of large Aztec rectangles, with some fixed distribution of defects along a boundary. The associated Non-Intersecting Lattice Path configurations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::822178d84c72bcc99f0e420ab51896f6