Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Philippe Beaudoin"'
Autor:
Philippe Beaudoin
Mais quel mauvais vent souffle sur Montréal en cet automne 1929? Deux ans après la mort de 77 enfants dans l'incendie du cinéma Laurier Palace, Thomas Larivière, comédien, dis- paraît. Au même moment, le cadavre d'un prêtre, professeur de Tho
Autor:
Panayiota Poirazi, Greg Wayne, Christopher C. Pack, Surya Ganguli, Joel Zylberberg, Pieter R. Roelfsema, Grace W. Lindsay, Blake A. Richards, Walter Senn, Colleen J Gillon, Denis Therien, Philippe Beaudoin, Anna C. Schapiro, Kenneth D. Miller, Archy O. de Berker, Yoshua Bengio, Claudia Clopath, Peter E. Latham, Amelia J. Christensen, João Sacramento, Nikolaus Kriegeskorte, Timothy P. Lillicrap, Rui Ponte Costa, Danijar Hafner, Daniel L. K. Yamins, Benjamin Scellier, Rafal Bogacz, Adam Kepecs, Richard Naud, Friedemann Zenke, Konrad P. Kording, Andrew M. Saxe
Publikováno v:
Richards, B A, Lillicrap, T P, Beaudoin, P, Bengio, Y, Bogacz, R, Christensen, A, Clopath, C, Costa, R P, de Berker, A, Ganguli, S, Gillon, C J, Hafner, D, Kepecs, A, Kriegeskorte, N, Latham, P, Lindsay, G W, Miller, K D, Naud, R, Pack, C C, Poirazi, P, Roelfsema, P, Sacramento, J, Saxe, A, Scellier, B, Schapiro, A C, Senn, W, Wayne, G, Yamins, D, Zenke, F, Zylberberg, J, Therien, D & Kording, K P 2019, ' A deep learning framework for neuroscience ', Nature Neuroscience, vol. 22, no. 11, pp. 1761-1770 . https://doi.org/10.1038/s41593-019-0520-2
Nature Neuroscience, 22(11), 1761-1770. Nature Publishing Group
Nat Neurosci
Nature Neuroscience, 22(11), 1761-1770. Nature Publishing Group
Nat Neurosci
Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b42f784020df4a8b09aed7fa2d889d1
https://research-information.bris.ac.uk/ws/files/218472922/A_deep_learning_framework_for_neuroscience_vFinal_RC.pdf
https://research-information.bris.ac.uk/ws/files/218472922/A_deep_learning_framework_for_neuroscience_vFinal_RC.pdf
Autor:
Philippe Beaudoin
Printemps 1929. Un mois après la mort suspecte de la jeune Judith Larocque, Léo Déry, détective privé, se voit confier l'enquête par les parents de la victime puisque la police piétine. Avec ses méthodes peu conventionnelles, Léo découvre q
Publikováno v:
ACM Transactions on Graphics. 28:1-9
We present a method for precomputing robust task-based control policies for physically simulated characters. This allows for characters that can demonstrate skill and purpose in completing a given task, such as walking to a target location, while phy
Publikováno v:
ACM Transactions on Graphics. 27:1-7
Modeling the large space of possible human motions requires scalable techniques. Generalizing from example motions or example controllers is one way to provide the required scalability. We present techniques for generalizing a controller for physics-
Publikováno v:
ACM SIGGRAPH 2010 papers on - SIGGRAPH '10.
We present a control strategy for physically-simulated walking motions that generalizes well across gait parameters, motion styles, character proportions, and a variety of skills. The control is realtime, requires no character-specific or motion-spec
Publikováno v:
Graphics Interface
Motion capture data is an effective way of synthesizing human motion for many interactive applications, including games and simulations. A compact, easy-to-decode representation is needed for the motion data in order to support the real-time motion o
Publikováno v:
Symposium on Computer Animation
We present a new particle-based method for viscoelastic fluid simulation. We achieve realistic small-scale behavior of substances such as paint or mud as they splash on moving objects. Incompressibility and particle anti-clustering are enforced with