Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Philippe Akessoul"'
Autor:
Julien Frandon, Philippe Akessoul, Tarek Kammoun, Djamel Dabli, Hélène de Forges, Jean-Paul Beregi, Joël Greffier
Publikováno v:
Sensors, Vol 22, Iss 11, p 3973 (2022)
Microwave ablation systems allow for performing tumoral destruction in oncology. The objective of this study was to assess the early response and reliability of the microwave ablation zone size at one month for liver, kidney and lung lesions, as comp
Externí odkaz:
https://doaj.org/article/e0e5656f71cd4689a54e8f82570692d3
Autor:
Joël Greffier, Asmaa Belaouni, Djamel Dabli, Jean Goupil, Romain Perolat, Philippe Akessoul, Tarek Kammoun, Adel Hoballah, Jean Paul Beregi, Julien Frandon
Publikováno v:
Diagnostic and Interventional Imaging. 103:338-344
The purpose of this study was to compare peak skin dose (PSD) and dose map calculated by Dose-Tracking-System® (DTS) software and measured with radiochromic films in patients undergoing abdominopelvic embolization.The PSD measured by radiochromic fi
Autor:
Djamel Dabli, Asmaa Belaouni, Philippe Akessoul, Laure Berny, Jean-Paul Beregi, Takieddine Addala, J. Frandon, Joël Greffier
Publikováno v:
Diagnostic and Interventional Imaging. 103:31-40
Purpose The purpose of this study was to assess the impact of advanced modeled iterative reconstruction (ADMIRE) algorithm and dose levels on the accuracy of Hounsfield unit (HU) measurement, image noise and contrast-to-noise ratio (CNR) in virtual m
Autor:
Aymeric Hamard, Asmaa Belaouni, Julien Frandon, Joël Greffier, Philippe Akessoul, Jean-Paul Beregi, Djamel Dabli
Publikováno v:
Quant Imaging Med Surg
BACKGROUND: New reconstruction algorithms based on deep learning have been developed to correct the image texture changes related to the use of iterative reconstruction algorithms. The purpose of this study was to evaluate the impact of a new deep le
Autor:
Philippe Akessoul, Aymeric Hamard, Joël Greffier, Edinaud Bezandry, Julien Frandon, Jean-Paul Beregi, Romaric Loffroy, Martin M. Bertrand, Takieddine Addala
Publikováno v:
Quant Imaging Med Surg
BACKGROUND: Many computed tomography (CT) navigation systems have been developed to help radiologists improve the accuracy and safety of the procedure. We evaluated the accuracy of one CT computer-assisted guided procedure with different reduction do
Autor:
Philippe Akessoul, Asmaa Belaouni, Joël Greffier, Julien Frandon, Djamel Dabli, Jean-Paul Beregi, Aymeric Hamard
Publikováno v:
Diagnostic and Interventional Imaging. 102:405-412
Purpose To assess the impact of dose reduction and the use of an advanced modeled iterative reconstruction algorithm (ADMIRE) on image quality in low-energy monochromatic images from a dual-source dual energy computed tomography CT (DSCT) platform. M
Autor:
Philippe Akessoul, M. Loisy, S. Becamel, Jean Paul Beregi, H. Sharara, J. Frandon, J. Goupil, I. Bouassida
Publikováno v:
Journal d'imagerie diagnostique et interventionnelle. 4:36-43
Resume Introduction Plus de 16 000 ponction-biopsies hepatiques (PBH) sont realisees chaque annee. Messages principaux Le rendement diagnostique de ce geste est le plus souvent excellent mais ce geste n’est pas anodin et peut avoir des complication
Publikováno v:
Journal d'imagerie diagnostique et interventionnelle. 3:129-138
Resume Introduction Parvenir a un diagnostic medical est un processus complexe, sujet aux erreurs. L’imagerie medicale joue aujourd’hui un role de plus en plus important dans le diagnostic en ameliorant les suspicions diagnostiques cliniques et b
Autor:
Aymeric Hamard, Philippe Akessoul, Julien Frandon, Julien Le Roy, Yannick Fuamba, Jean-Paul Beregi, Asmaa Belaouni, Boris Guiu, Joël Greffier, Djamel Dabli
Publikováno v:
Medical physicsREFERENCES. 48(10)
Purpose To compare the impact on CT image quality and dose reduction of two versions of a Deep Learning Image Reconstruction algorithm. Material and methods Acquisitions on the CT ACR 464 phantom were performed at five dose levels (CTDIvol : 10/7.5/5
Autor:
Salim Si-Mohamed, Aymeric Hamard, Djamel Dabli, Philippe Akessoul, Asmaa Belaouni, Julien Frandon, Francis Besse, Boris Guiu, Jean-Paul Beregi, Joël Greffier
Publikováno v:
Diagnostic and interventional imaging. 103(1)
Purpose The purpose of this study was to compare the effect of two deep learning image reconstruction (DLR) algorithms in chest computed tomography (CT) with different clinical indications. Material and methods Acquisitions on image quality and anthr