Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Philipp Rütimann"'
Autor:
Peter Bühlmann, Alexander Graf, Diana Coman, Laurent Bigler, Maite Colinas, Eva Vranová, Manuel Rodríguez-Concepción, Philipp Rütimann, M. Victoria Barja, Ralf Welsch, M. Águila Ruiz-Sola, Gilles Beck, Wilhelm Gruissem
Publikováno v:
Digital.CSIC: Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
Digital.CSIC. Repositorio Institucional del CSIC
instname
Consejo Superior de Investigaciones Científicas (CSIC)
Digital.CSIC. Repositorio Institucional del CSIC
instname
Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synt
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb53f7f82decaae201d0a2b059ee8931
http://hdl.handle.net/10261/248019
http://hdl.handle.net/10261/248019
Publikováno v:
Journal of Statistical Planning and Inference. 143:1869-1871
Publikováno v:
Methods in molecular biology (Clifton, N.J.). 1153
The inference of gene co-expression networks is a valuable resource for novel hypotheses in experimental research. Routine high-throughput microarray transcript profiling experiments and the rapid development of next-generation sequencing (NGS) techn
Publikováno v:
Methods in Molecular Biology ISBN: 9781493906055
The inference of gene co-expression networks is a valuable resource for novel hypotheses in experimental research. Routine high-throughput microarray transcript profiling experiments and the rapid development of next-generation sequencing (NGS) techn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f18a34232083e8658a93345ae9b5d05d
https://doi.org/10.1007/978-1-4939-0606-2_21
https://doi.org/10.1007/978-1-4939-0606-2_21
Publikováno v:
Journal of Statistical Planning and Inference
We consider estimation in a high-dimensional linear model with strongly correlated variables. We propose to cluster the variables first and do subsequent sparse estimation such as the Lasso for cluster-representatives or the group Lasso based on the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::95c287ab1d7892690c38576894409335
http://arxiv.org/abs/1209.5908
http://arxiv.org/abs/1209.5908
Publikováno v:
Statistical Methods in Medical Research Online First
Guarding against false positive selections is important in many applications. We discuss methods based on subsampling and sample splitting for controlling the expected number of false positives and assigning p values. They are generic and especially
Autor:
Peter Bühlmann, Philipp Rütimann
Publikováno v:
Electron. J. Statist. 3 (2009), 1133-1160
We present a graph-based technique for estimating sparse covariance matrices and their inverses from high-dimensional data. The method is based on learning a directed acyclic graph (DAG) and estimating parameters of a multivariate Gaussian distributi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f1eb9d463564d966f2caaf296e5e0c7d