Zobrazeno 1 - 10
of 127
pro vyhledávání: '"Philip Rosenau"'
Autor:
Philip Rosenau
Publikováno v:
Axioms, Vol 12, Iss 1, p 2 (2022)
It is shown that a simple modification of the standard Lagrangian underlying the dynamics of Newtonian lattices enables one to infer the hidden Lagrangian structure of certain classes of first order in time evolution equations which lack the conventi
Externí odkaz:
https://doaj.org/article/377fbdb1a84f4fc2b9c732f4a6691389
Publikováno v:
Nonlinear Theory of Generalized Functions ISBN: 9780203745458
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2af5b7ae0785d4285f6435fa2262c0c6
https://doi.org/10.1201/9780203745458-11
https://doi.org/10.1201/9780203745458-11
Autor:
Alon Zilburg, Philip Rosenau
Publikováno v:
Physics Letters A. 383:991-996
Exploiting the finite span of compactons we use the K ( m , n ) Equation to develop an approximate description of early and late stages of their interaction.
Autor:
Philip Rosenau, Alexander Oron
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation. 110:106384
Autor:
Arkady Pikovsky, Philip Rosenau
Publikováno v:
Chaos (Woodbury, N.Y.). 30(5)
In the present paper, we study phase waves of self-sustained oscillators with a nearest-neighbor dispersive coupling on an infinite lattice. To analyze the underlying dynamics, we approximate the lattice with a quasi-continuum (QC). The resulting par
Autor:
Philip Rosenau, Alexander Oron
In both the Gardner equation and its extensions, the non-convex convection bounds the range of solitons / compactons velocities beyond which they dissolve and kink/anti-kink form. Close to solitons barrier we unfold a narrow strip of velocities where
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2bbd253fd414b29b7f4c63abb3d8c1d5
Autor:
Philip Rosenau, Arkady Pikovsky
We introduce and study a family of lattice equations which may be viewed either as a strongly nonlinear discrete extension of the Gardner equation, or a non-convex variant of the Lotka–Volterra chain. Their deceptively simple form supports a very r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a7601f183089fd35e765b61f2071d60
Autor:
Philip Rosenau
Publikováno v:
Wave Motion. 110:102881
Autor:
Philip Rosenau, Alon Zilburg
Publikováno v:
Nonlinearity. 31:2651-2665
Using a priori estimates we prove that initially nonnegative, smooth and compactly supported solutions of the equations must lose their smoothness within a finite time. Formation of a singularity is a prerequisite for the subsequent emergence of comp
Autor:
Philip Rosenau
Publikováno v:
Physica D: Nonlinear Phenomena. 425:132956
We introduce gradient-tempered Ginzburg-Landau, GL, free energy functional J = ∫ ( G ( u x ) − W ( u ) ) d x , where W ( u ) = λ 2 ( 2 u 2 − u 4 ) is the bulk energy endowed with a stiffness coefficient a 2 ( u ) which vanishes both at the pha