Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Pham, Duc Hiep"'
Autor:
Pham, Duc Hiep
Publikováno v:
Comptes Rendus. Mathématique, Vol 360, Iss G8, Pp 933-936 (2022)
In this paper, we formulate and prove the so-called $p$-adic non-commutative analytic subgroup theorem. This result is seen as the $p$-adic analogue of a recent theorem given by Yafaev in [11].
Externí odkaz:
https://doaj.org/article/afdaa0c02498444aacf65f67be187d4f
Autor:
Pham, Duc Hiep
In this paper, we formulate and prove the so-called $p$-adic non-commutative analytic subgroup theorem. This result is seen as the $p$-adic analogue of a recent theorem given by Yafaev.
Externí odkaz:
http://arxiv.org/abs/2107.07656
Given $E \subseteq \mathbb{F}_q^d \times \mathbb{F}_q^d$, with the finite field $\mathbb{F}_q$ of order $q$ and the integer $d \ge 2$, we define the two-parameter distance set as $\Delta_{d, d}(E)=\left\{\left(\|x_1-y_1\|, \|x_2-y_2\|\right) : (x_1,x
Externí odkaz:
http://arxiv.org/abs/2101.10959
Autor:
Pham, Duc Hiep
Let $\mathcal R$ be a finite valuation ring of order $q^r$ with $q$ a power of an odd prime number, and $\mathcal A$ be a set in $\mathcal R$. In this paper, we improve a recent result due to Yazici (2018) on a sum-product type problem. More precisel
Externí odkaz:
http://arxiv.org/abs/2005.05564
Autor:
PHAM, DUC HIEP
Publikováno v:
Bulletin of the Australian Mathematical Society; Oct2024, Vol. 110 Issue 2, p234-243, 10p
Autor:
Pham, Duc Hiep
Publikováno v:
Periodica Mathematica Hungarica; Sep2024, Vol. 89 Issue 1, p23-31, 9p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $\mathcal{E}$ be a set of points in $\mathbb{F}_q^d$. Bennett, Hart, Iosevich, Pakianathan, and Rudnev (2016) proved that if $|\mathcal{E}|\gg q^{d-\frac{d-1}{k+1}}$ then $\mathcal{E}$ determines a positive proportion of all $k$-simplices. In thi
Externí odkaz:
http://arxiv.org/abs/1608.06398
Autor:
Fuchs, Clemens, Pham, Duc Hiep
Publikováno v:
Ultrametric Analysis and Applications 7 (2015), 143-156
It is well-known that the W\"ustholz' analytic subgroup theorem is one of the most powerful theorems in transcendence theory. The theorem gives in a very systematic and conceptual way the transcendence of a large class of complex numbers, e.g. the tr
Externí odkaz:
http://arxiv.org/abs/1502.00768
Autor:
Fuchs, Clemens, Pham, Duc Hiep
We use a $p$-adic analogue of the analytic subgroup theorem of W\"ustholz to deduce the transcendence and linear independence of some new classes of $p$-adic numbers. In particular we give $p$-adic analogues of results of W\"ustholz contained in [G.
Externí odkaz:
http://arxiv.org/abs/1412.1248