Zobrazeno 1 - 10
of 104
pro vyhledávání: '"Peypouquet, Juan"'
We present an optimization algorithm that can identify a global minimum of a potentially nonconvex smooth function with high probability, assuming the Gibbs measure of the potential satisfies a logarithmic Sobolev inequality. Our contribution is twof
Externí odkaz:
http://arxiv.org/abs/2410.13737
Autor:
Cortild, Daniel, Peypouquet, Juan
This paper is concerned with the study of a family of fixed point iterations combining relaxation with different inertial (acceleration) principles. We provide a systematic, unified and insightful analysis of the hypotheses that ensure their weak, st
Externí odkaz:
http://arxiv.org/abs/2401.16870
Autor:
Maulen, Juan Jose, Peypouquet, Juan
In this paper, we analyze a speed restarting scheme for the dynamical system given by $$ \ddot{x}(t) + \dfrac{\alpha}{t}\dot{x}(t) + \nabla \phi(x(t)) + \beta \nabla^2 \phi(x(t))\dot{x}(t)=0, $$ where $\alpha$ and $\beta$ are positive parameters, and
Externí odkaz:
http://arxiv.org/abs/2301.12240
We establish the weak convergence of inertial Krasnoselskii-Mann iterations towards a common fixed point of a family of quasi-nonexpansive operators, along with estimates for the non-asymptotic rate at which the residuals vanish. Strong and linear co
Externí odkaz:
http://arxiv.org/abs/2210.03791
Autor:
Contreras, Andres, Peypouquet, Juan
This research is concerned with evolution equations and their forward-backward discretizations. Our first contribution is an estimation for the distance between iterates of sequences generated by forward-backward schemes, useful in the convergence an
Externí odkaz:
http://arxiv.org/abs/1912.06225
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Attouch, Hedy, Peypouquet, Juan
We study the behavior of the trajectories of a second-order differential equation with vanishing damping, governed by the Yosida regularization of a maximally monotone operator with time-varying index, along with a new {\em Regularized Inertial Proxi
Externí odkaz:
http://arxiv.org/abs/1705.03803
We first study the fast minimization properties of the trajectories of the second-order evolution equation $$\ddot{x}(t) + \frac{\alpha}{t} \dot{x}(t) + \beta \nabla^2 \Phi (x(t))\dot{x} (t) + \nabla \Phi (x(t)) = 0,$$ where $\Phi:\mathcal H\to\mathb
Externí odkaz:
http://arxiv.org/abs/1601.07113
Autor:
Attouch, Hedy, Peypouquet, Juan
Publikováno v:
SIAM Journal on Optimization 26 (2016), no. 3, 1824-1834
The {\it forward-backward algorithm} is a powerful tool for solving optimization problems with a {\it additively separable} and {\it smooth} + {\it nonsmooth} structure. In the convex setting, a simple but ingenious acceleration scheme developed by N
Externí odkaz:
http://arxiv.org/abs/1510.08740