Zobrazeno 1 - 10
of 1 676
pro vyhledávání: '"Pettis integral"'
Autor:
Cichoń, Mieczysław1 (AUTHOR) mieczyslaw.cichon@amu.edu.pl, Shammakh, Wafa2 (AUTHOR) wmshammakh@uj.edu.sa, Cichoń, Kinga3 (AUTHOR) kinga.cichon@put.poznan.pl, Salem, Hussein A. H.4 (AUTHOR) hssdina@alexu.edu.eg
Publikováno v:
Mathematics (2227-7390). Dec2024, Vol. 12 Issue 23, p3642. 29p.
Autor:
Miyashita, Masaki, Ui, Takashi
The analysis of large population economies with incomplete information often entails the integration of a continuum of random variables. We showcase the usefulness of the integral notion \`a la Pettis (1938) to study such models. We present several r
Externí odkaz:
http://arxiv.org/abs/2403.17605
Publikováno v:
Mathematics, Vol 12, Iss 23, p 3642 (2024)
The problem of equivalence between differential and integral problems is absolutely crucial when applying solution methods based on operators and their properties in function spaces. In this paper, we complement the solution of this important problem
Externí odkaz:
https://doaj.org/article/760d1507eb654f3e883fc5df8c799a85
Publikováno v:
Real Analysis Exchange, 46(1), 2021, pp. 175-190
A kind of Pettis integral representation for a Banach valued It\^o process is given and its drift term is modified using a Girsanov Theorem.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/2007.04610
Autor:
Geitz, Robert F.
Publikováno v:
Transactions of the American Mathematical Society, 1982 Feb 01. 269(2), 535-548.
Externí odkaz:
https://www.jstor.org/stable/1998464
Autor:
Candeloro, Domenico1 candelor@dmi.unipg.it, Sambucini, Anna Rita1 anna.sambucini@unipg.it, Trastulli, Luca1 luca.trastulli@gmail.com
Publikováno v:
Real Analysis Exchange. 2021, Vol. 46 Issue 1, p175-189. 15p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dilworth, Stephen J., Girardi, Maria
For an arbitrary infinite-dimensional Banach space $\X$, we construct examples of strongly-measurable $\X$-valued Pettis integrable functions whose indefinite Pettis integrals are nowhere weakly differentiable; thus, for these functions the Lebesgue
Externí odkaz:
http://arxiv.org/abs/math/9410203