Zobrazeno 1 - 10
of 3 884
pro vyhledávání: '"Petrov-Galerkin"'
Publikováno v:
Nonlinear Engineering, Vol 13, Iss 1, Pp 329-35 (2024)
This study explores the Petrov–Galerkin method’s application in solving a linear fourth-order ordinary beam equation of the form u″″+qu=fu^{\prime\prime} ^{\prime\prime} +qu=f. The equation entails two distinct boundary conditions: pinned–p
Externí odkaz:
https://doaj.org/article/06f6cd8450a64eb1a3ec99f2fa96c3ff
Publikováno v:
Engineering Computations, 2024, Vol. 41, Issue 6, pp. 1371-1380.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/EC-10-2023-0699
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 12, Iss , Pp 100910- (2024)
In this paper, the error analysis of the Petrov–Galerkin finite volume element method (FVEM) is investigated for a nonlinear parabolic integro-differential equation that arises in the mathematical modeling of the penetration of a magnetic field int
Externí odkaz:
https://doaj.org/article/9a82612ffd8247eeb1e3ecf04af2a04f
Autor:
John P. Roop
Publikováno v:
Results in Applied Mathematics, Vol 23, Iss , Pp 100493- (2024)
This article presents the implementation of a randomized neural network (RNN) approach in approximating the solution of fractional order boundary value problems using a Petrov–Galerkin framework with Lagrange basis test functions. Traditional metho
Externí odkaz:
https://doaj.org/article/8c6214dea8614cab8b16c6f17886ff38
Publikováno v:
Mathematics in Engineering, Vol 6, Iss 1, Pp 173-191 (2024)
We numerically investigate the possibility of defining Stabilization-Free Virtual Element discretizations–i.e., Virtual Element Method discretizations without an additional non-polynomial non-operator-preserving stabilization term–of advection-di
Externí odkaz:
https://doaj.org/article/11743cf8b20a4530992658d92e1d5b95
Autor:
Y.H. Youssri, A.G. Atta
Publikováno v:
Iranian Journal of Numerical Analysis and Optimization, Vol 14, Iss Issue 1, Pp 172-199 (2024)
Herein, we construct an explicit modal numerical solver based on the spec-tral Petrov–Galerkin method via a specific combination of shifted Cheby-shev polynomial basis for handling the nonlinear time-fractional Burger-type partial differential equa
Externí odkaz:
https://doaj.org/article/30691656156f455ea5712e820e9c7ce7
Autor:
R. Z. Dautov, G. R. Salimzyanova
Publikováno v:
Учёные записки Казанского университета. Серия Физико-математические науки, Vol 165, Iss 3, Pp 190-207 (2024)
This article proposes a family of the Petrov–Galerkin–FEM methods that can be used to solve the nonlinear Klein–Gordon equation. The discrete schemes were formulated based on the solution of the problem and its time derivative. They ensure that
Externí odkaz:
https://doaj.org/article/c31798cf00cc44d5831964d8eb251cab
Autor:
Bo Tang, Huasheng Wang
Publikováno v:
AIMS Mathematics, Vol 8, Iss 12, Pp 29017-29041 (2023)
In this work, we study a posteriori error analysis of a general class of fractional initial value problems and fractional boundary value problems. A Petrov-Galerkin spectral method is adopted as the discretization technique in which the generalized J
Externí odkaz:
https://doaj.org/article/bf17270a691443a5ab4912353d403f38
Publikováno v:
Nonlinear Engineering, Vol 12, Iss 1, Pp 5652-61 (2023)
In this research, a compact combination of Chebyshev polynomials is created and used as a spatial basis for the time fractional fourth-order Euler–Bernoulli pinned–pinned beam. The method is based on applying the Petrov–Galerkin procedure to di
Externí odkaz:
https://doaj.org/article/72f70d6c320445d887139b2a3a6121d2