Zobrazeno 1 - 10
of 768
pro vyhledávání: '"Petrov, E. A."'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study extremal properties of finite ultrametric spaces $X$ and related properties of representing trees $T_X$. The notion of weak similarity for such spaces is introduced and related morphisms of labeled rooted trees are found. It is shown that th
Externí odkaz:
http://arxiv.org/abs/1610.08282
Autor:
Petrov, E. Yu., Kudrin, A. V.
Publikováno v:
Phys. Rev. A 94, 032107 (2016)
The problem of longitudinal oscillations of an electric field and a charge polarization density in QED vacuum is considered. Within the framework of semiclassical analysis, we calculate time-periodic solutions of bosonized (1+1)-dimensional QED (mass
Externí odkaz:
http://arxiv.org/abs/1604.00986
Autor:
Petrov, E. A., Sevost'yanov, E. A.
A behavior of homeomorphisms of Orlicz classes in a closure of a domain is investigated. It is proved that above classes are equicontinuous in the closure of domains with some restrictions on it's boundaries provided that the corresponding inner dila
Externí odkaz:
http://arxiv.org/abs/1603.03885
A metric space $X$ is rigid if the isometry group of $X$ is trivial. The finite ultrametric spaces $X$ with $|X| \geq 2$ are not rigid since for every such $X$ there is a self-isometry having exactly $|X|-2$ fixed points. Using the representing trees
Externí odkaz:
http://arxiv.org/abs/1511.08133
We study the local behavior of the closed-open discrete maps of Orlich--Sobolev classes in ${\Bbb R}^n,$ $n\geqslant 3.$ It was found that these mappings $f$ have continuous extension in isolated point $x_0$ in $D\setminus\{x_0 \},$ as soon as their
Externí odkaz:
http://arxiv.org/abs/1509.00887
Publikováno v:
J. Exp. Theor. Phys. 122, 995 (2016)
We consider electromagnetic nonlinear normal modes in cylindrical cavity resonators filled with a nonlinear nondispersive medium. The key feature of the analysis is that exact analytical solutions of the nonlinear field equations are employed to stud
Externí odkaz:
http://arxiv.org/abs/1504.01273
Let $\mathfrak{M}$ be a class of metric spaces. A metric space $Y$ is minimal $\mathfrak{M}$-universal if every $X\in\mathfrak{M}$ can be isometrically embedded in $Y$ but there are no proper subsets of $Y$ satisfying this property. We find condition
Externí odkaz:
http://arxiv.org/abs/1503.00667
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $(X,d)$ be a finite ultrametric space. In 1961 E.C. Gomory and T.C. Hu proved the inequality $|Sp(X)|\leqslant |X|$ where $Sp(X)=\{d(x,y)\colon x,y \in X\}$. Using weighted Hamiltonian cycles and weighted Hamiltonian paths we give new necessary a
Externí odkaz:
http://arxiv.org/abs/1412.1979