Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Petra Kocábová"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol 9, Iss 2 (2007)
We study the properties of the function R (m) (n) defined as the number of representations of an integer n as a sum of distinct m-Bonacci numbers F (m) k, given by F i (m) =2 i-1, for i∈ { 1, 2, …, m}, F k+m (m) =F k+m-1 (m) +F k+m-2 (m) + ⋯ +
Externí odkaz:
https://doaj.org/article/22dd75c437bc4efe9c443c4385886d90
Publikováno v:
RAIRO - Theoretical Informatics and Applications. 39:343-359
a 1 Abstract. We study the properties of the function R(n) which deter- mines the number of representations of an integer n as a sum of distinct Fibonacci numbers Fk. We determine the maximum and mean values of R(n )f orFk ≤ n