Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Petr G. Grinevich"'
Autor:
Simonetta Abenda, Petr G. Grinevich
In this paper, we construct an explicit map from planar bicolored (plabic) trivalent graphs representing a given irreducible positroid cell $${{\mathcal {S}}}_{{\mathcal {M}}}^{\text{ TNN }}$$ S M TNN in the totally non-negative Grassmannian $$Gr^{\t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6042785fc9ebdc37b961447cb804fae3
https://hdl.handle.net/11585/903338
https://hdl.handle.net/11585/903338
Autor:
Simonetta Abenda, Petr G Grinevich
The standard parametrization of totally non-negative Grassmannians was obtained by A. Postnikov [45] introducing the boundary measurement map in terms of discrete path integration on planar bicolored (plabic) graphs in the disk. An alternative parame
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c92798baeab22509107246445a5dd88b
http://arxiv.org/abs/2111.05782
http://arxiv.org/abs/2111.05782
We establish a new connection between the theory of totally positive Grassmannians and the theory of $${{\mathtt{M}}}$$ -curves using the finite-gap theory for solitons of the KP equation. Here and in the following KP equation denotes the Kadomtsev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c56a8370db2e5d2a0232c87e3310eaf5
http://hdl.handle.net/11585/638436
http://hdl.handle.net/11585/638436