Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Petneházi, Gábor"'
Volatility is a natural risk measure in finance as it quantifies the variation of stock prices. A frequently considered problem in mathematical finance is to forecast different estimates of volatility. What makes it promising to use deep learning met
Externí odkaz:
http://arxiv.org/abs/2009.05508
Autor:
Petneházi, Gábor, Gáll, József
This article applies a long short-term memory recurrent neural network to mortality rate forecasting. The model can be trained jointly on the mortality rate history of different countries, ages, and sexes. The RNN-based method seems to outperform the
Externí odkaz:
http://arxiv.org/abs/1909.05501
Autor:
Petneházi, Gábor
This article presents a new method for forecasting Value at Risk. Convolutional neural networks can do time series forecasting, since they can learn local patterns in time. A simple modification enables them to forecast not the mean, but arbitrary qu
Externí odkaz:
http://arxiv.org/abs/1908.07978
Autor:
Petneházi, Gábor1
Publikováno v:
Terminus. 2024, Vol. 26 Issue 2, p125-140. 16p.
Autor:
Petneházi, Gábor
Time series forecasting is difficult. It is difficult even for recurrent neural networks with their inherent ability to learn sequentiality. This article presents a recurrent neural network based time series forecasting framework covering feature eng
Externí odkaz:
http://arxiv.org/abs/1901.00069
Autor:
Petneházi, Gábor, Gáll, József
We investigate the predictability of several range-based stock volatility estimators, and compare them to the standard close-to-close estimator which is most commonly acknowledged as the volatility. The patterns of volatility changes are analyzed usi
Externí odkaz:
http://arxiv.org/abs/1803.07152
Autor:
Petneházi, Gábor, author
Publikováno v:
Acta Conventus Neo-Latini Upsaliensis. 14/1-2:835-843
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Petneházi, Gábor
Publikováno v:
In Machine Learning with Applications 15 December 2021 6
Autor:
Petneházi, Gábor1 (AUTHOR) gabor.petnehazi@science.unideb.hu, Gáll, József2 (AUTHOR)
Publikováno v:
Intelligent Systems in Accounting, Finance & Management. Jul2019, Vol. 26 Issue 3, p109-116. 8p. 8 Charts, 1 Graph.