Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Petite, Samuel"'
Autor:
Cabezas, Christopher, Petite, Samuel
For a ${\mathbb Z}^{d}$-topological dynamical system $(X, T, {\mathbb Z}^{d})$, an isomomorphism is a self-homeomorphism $\phi : X\to X$ such that for some matrix $M\in {\rm GL}(d,{\mathbb Z})$ and any ${n}\in {\mathbb Z}^{d}$, $\phi\circ T^{{n}}=T^{
Externí odkaz:
http://arxiv.org/abs/2309.10156
In discrete schemes, weak KAM solutions may be interpreted as approximations of correctors for some Hamilton-Jacobi equations in the periodic setting. It is known that correctors may not exist in the almost periodic setting. We show the existence of
Externí odkaz:
http://arxiv.org/abs/2308.13058
Every symbolic system supports a Borel measure that is invariant under the shift, but it is not known if every such systems supports a measure that is invariant under all of its automorphisms; known as a characteristic measure. We give sufficient con
Externí odkaz:
http://arxiv.org/abs/2307.06451
We develop a geometric framework to address asymptoticity and nonexpansivity in topological dynamics. Our framework can be applied when the acting group is second countable and locally compact. As an application, we show extensions of Schwartzman's t
Externí odkaz:
http://arxiv.org/abs/2210.00115
Minimal Cantor systems of finite topological rank (that can be represented by a Bratteli-Vershik diagram with a uniformly bounded number of vertices per level) are known to have dynamical rigidity properties. We establish that such systems, when they
Externí odkaz:
http://arxiv.org/abs/2003.06328
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Berthe, Valerie, Bernales, P Cecchi, Durand, Fabien, Leroy, J, Perrin, Dominique, Petite, Samuel
Dimension groups are complete invariants of strong orbit equivalence for minimal Cantor systems. This paper studies a natural family of minimal Cantor systems having a finitely generated dimension group, namely the primitive unimodular proper S-adic
Externí odkaz:
http://arxiv.org/abs/1911.07700
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cortez, Maria Isabel, Petite, Samuel
In this article we study the centralizer of a minimal aperiodic action of a countable group on the Cantor set (an aperiodic minimal Cantor system). We show that any countable residually finite group is the subgroup of the centralizer of some minimal
Externí odkaz:
http://arxiv.org/abs/1807.04654
In this article we study automorphisms of Toeplitz subshifts. Such groups are abelian and any finitely generated torsion subgroup is finite and cyclic. When the complexity is non superlinear, we prove that the automorphism group is, modulo a finite c
Externí odkaz:
http://arxiv.org/abs/1701.00999