Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Petio S."'
Publikováno v:
Symmetry, Vol 15, Iss 7, p 1394 (2023)
Using barrier strip conditions, we study the solvability of two-point boundary value problems for the equation x(n)=f(t,x,x′,…,x(n−1)). In the case n=4, we apply the used approach to obtain results guaranteeing positive or non-negative, monoton
Externí odkaz:
https://doaj.org/article/c68a20a3a7614b9bb8dfe45c95a48583
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Symmetry (20738994); Jul2023, Vol. 15 Issue 7, p1394, 19p
Publikováno v:
Symmetry; Volume 15; Issue 7; Pages: 1394
Using barrier strip conditions, we study the solvability of two-point boundary value problems for the equation x(n)=f(t,x,x′,…,x(n−1)). In the case n=4, we apply the used approach to obtain results guaranteeing positive or non-negative, monoton
Autor:
Kelevedjiev, Petio S.1 pskeleved@abv.bg, Todorov, Todor Z.1
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations. 2019, p1-15. 15p.
Publikováno v:
Axioms, Vol 9, Iss 2, p 62 (2020)
Under barrier strips type assumptions we study the existence of C 3 [ 0 , 1 ] —solutions to various two-point boundary value problems for the equation x ‴ = f ( t , x , x ′ , x ″ ) . We give also some results guaranteeing positive or non-nega
Externí odkaz:
https://doaj.org/article/40432cb2101b422f9f5da8d63364a749
Autor:
Ravi P. Agarwal, Petio S. Kelevedjiev
Publikováno v:
Mathematics, Vol 8, Iss 4, p 603 (2020)
In this paper, we study the solvability of various two-point boundary value problems for x ( 4 ) = f ( t , x , x ′ , x ″ , x ‴ ) , t ∈ ( 0 , 1 ) , where f may be defined and continuous on a suitable bounded subset of its domain. Imposing barr
Externí odkaz:
https://doaj.org/article/6836e285646a43219f40fe1f9ee4b1f6
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 28,, Pp 1-8 (2013)
We study the solvability of the boundary value problem $$ (phi_p(x'))'=f(t,x,x'),quad x(0)=A,;x'(1)=B, $$ where $phi_p(s)=s|s|^{p-2}$, using the barrier strip type arguments. We establish the existence of $C^2[0,1]$-solutions, restricting our conside
Externí odkaz:
https://doaj.org/article/cd1ed2238a994e258de190ff5a7b8873
Autor:
Petio S. Kelevedjiev
Publikováno v:
Electronic Journal of Differential Equations, Vol 2012, Iss 99,, Pp 1-8 (2012)
Using the barrier strips technique, we study the existence of solutions to the boundary-value problem $$displaylines{ x''=f(t,x,x'),quad tin(0,1),cr x'(0)=A,quad x(1)=Bx'(1)+C, }$$ where the scalar function f may be singular at t=0.
Externí odkaz:
https://doaj.org/article/b646b27d790b488ab3d5e3823b566def
Autor:
Petio S. Kelevedjiev
Publikováno v:
Electronic Journal of Differential Equations, Vol 2008, Iss 151,, Pp 1-9 (2008)
Under barrier strip type arguments we investigate the existence of global solutions to the initial value problem $x'=f(t,x,x')$, $x(0)=A$, where the scalar function $f(t,x,p)$ may be singular at $t=0$.
Externí odkaz:
https://doaj.org/article/8a999415567c43c5a49d33799ca83c87