Zobrazeno 1 - 10
of 126
pro vyhledávání: '"Peterson, John W."'
In this paper we examine the use of low-rank approximations for the handling of radiation boundary conditions in a transient heat equation given a cavity radiation setting. The finite element discretization that arises from cavity radiation is well k
Externí odkaz:
http://arxiv.org/abs/2305.06891
Autor:
Permann, Cody J., Gaston, Derek R., Andrs, David, Carlsen, Robert W., Kong, Fande, Lindsay, Alexander D., Miller, Jason M., Peterson, John W., Slaughter, Andrew E., Stogner, Roy H., Martineau, Richard C.
Publikováno v:
SoftwareX. 11 (2020) 100430
Harnessing modern parallel computing resources to achieve complex multi-physics simulations is a daunting task. The Multiphysics Object Oriented Simulation Environment (MOOSE) aims to enable such development by providing simplified interfaces for spe
Externí odkaz:
http://arxiv.org/abs/1911.04488
Autor:
Kong, Fande, Stogner, Roy H., Gaston, Derek R., Peterson, John W., Permann, Cody J., Slaughter, Andrew E., Martineau, Richard C.
Large-scale parallel numerical simulations are essential for a wide range of engineering problems that involve complex, coupled physical processes interacting across a broad range of spatial and temporal scales. The data structures involved in such s
Externí odkaz:
http://arxiv.org/abs/1809.02666
Publikováno v:
In Nuclear Engineering and Design 1 August 2022 394
The Multiphysics Object Oriented Simulation Environment (MOOSE) framework is a high-performance, open source, C++ finite element toolkit developed at Idaho National Laboratory. MOOSE was created with the aim of assisting domain scientists and enginee
Externí odkaz:
http://arxiv.org/abs/1710.08898
We present a novel phase-field model development capability in the open source MOOSE finite element framework. This facility is based on the 'modular free energy' approach in which the phase-field equations are implemented in a general form that is l
Externí odkaz:
http://arxiv.org/abs/1702.06450
Autor:
Peterson, John W., Stogner, Roy H.
The third-order Jeffery-Hamel ODE governing the flow of an incompressible fluid in a two-dimensional wedge is briefly derived, and a C^1 finite element formulation of the equation is developed. This formulation has several advantages, including a nat
Externí odkaz:
http://arxiv.org/abs/1612.06312
Autor:
Peterson, John W.
We present a series of optimal (in the sense of least-squares) curve fits for the stiffened gas equation of state for single-phase liquid water. At high pressures and (subcritical) temperatures, the parameters produced by these curve fits are found t
Externí odkaz:
http://arxiv.org/abs/1311.0534
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Advances in Engineering Software May 2018 119:68-92