Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Peter Zvengrowski"'
Publikováno v:
Homology, Homotopy and Applications. 19:89-110
Publikováno v:
Acta Arithmetica. 166:189-200
As usual let s = �+it. For any fixed value t = t0 with |t0| ≥ 8, and for � ≤ 0, we show that |�(s)| is strictly monotone decreasing in �
Autor:
J. Bryden, Peter Zvengrowski
Publikováno v:
Topology and its Applications. 127(1-2):213-257
The cohomology ring of an arbitrary orientable Seifert manifold is computed with Z /p coefficients for any prime p . In some cases the cohomology rings are given with Z /p s coefficients. These results will be used to compute the abelian Witten–Res
Autor:
Doug S. Phillips, Peter Zvengrowski
Publikováno v:
Contributions, Section of Natural, Mathematical and Biotechnical Sciences. 38:153
The first part of this paper deals with Dirichlet series, and convergence theorems are proved that strengthen the classical convergence theorem as found e.g. in Serre’s “A Course in Arithmetic.” The second part deals with Euler-type products. A
Publikováno v:
Scopus-Elsevier
The projective Stiefel manifold X n,k has a canonical line bundle ξ n,k , called the Hopf bundle. The order of cξn, the complexification of ξn,k,as an element of (the abelian group) K(X n,k ), has been determined in [3], [5], [6]. The main result
Autor:
J. Bryden, Peter Zvengrowski
Publikováno v:
Banach Center Publications. 45:25-39
This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with Z/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens
Publikováno v:
Canadian Journal of Mathematics. 49:1323-1339
In the first paper with the same title the authors were able to determine all partially oriented flag manifolds that are stably parallelizable or parallelizable, apart from four infinite families that were undecided. Here, using more delicate techniq
Publikováno v:
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 324:323-326
Resume Les varietes M considerees dans cette Note sont des varietes de Seifert orientables, de dimension 3, de base une sphere S2 et de groupe fondamental π1 ( M ) infini. L'objectif est de calculer les cup produits definissant la structure d'anneau
Publikováno v:
Canadian Mathematical Bulletin. 35:75-80
For any X and any q > 0, one has natural inclusions where the groups S1 and S3 act on S4q-1 in the standard way and are the G-invariant homotopy subsets, G = S1 or G = S3. It is proved here that for any space X of the homotopy type of a CW-complex an
Autor:
J. G. Williams, Peter Zvengrowski
Publikováno v:
Journal of Mathematical Physics. 33:256-266
A homotopy classification scheme is developed for Lorentz metrics that are defined on (2+1)‐dimensional space‐times of various topologies. The ‘‘kink number,’’ in the sense of the Finkelstein–Misner kink number in higher dimensions, is