Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Peter W. T. Yuen"'
Publikováno v:
Signals, Vol 3, Iss 4, Pp 752-764 (2022)
In recent years, a wide range of hyperspectral imaging systems using coded apertures have been proposed. Many implement compressive sensing to achieve faster acquisition of a hyperspectral data cube, but it is also potentially beneficial to use coded
Externí odkaz:
https://doaj.org/article/abef773620204863bda61bdd73f9d1ea
Publikováno v:
Remote Sensing, Vol 12, Iss 1, p 74 (2019)
In this research, we developed a new rendering-based end to end Hyperspectral scene simulator CHIMES (Cranfield Hyperspectral Image Modelling and Evaluation System), which generates nadir images of passively illuminated 3-D outdoor scenes in Visible,
Externí odkaz:
https://doaj.org/article/f33e1b483f954cc2b8fb8ae88453e665
Autor:
Ayan Chatterjee, Peter W. T. Yuen
Publikováno v:
Journal of Imaging, Vol 5, Iss 11, p 85 (2019)
This paper proposes a simple yet effective method for improving the efficiency of sparse coding dictionary learning (DL) with an implication of enhancing the ultimate usefulness of compressive sensing (CS) technology for practical applications, such
Externí odkaz:
https://doaj.org/article/556744a763aa4a73b0d5e7d1e1e32c9e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Peter W. T. Yuen, Ayan Chatterjee
Publikováno v:
IEEE Letters of the Computer Society. 2:28-31
Sparse Coding Dictionary (SCD) learning is to decompose a given hyperspectral image into a linear combination of a few bases. In a natural scene, because there is an imbalance in the abundance of materials, the problem of learning a given material we
Publikováno v:
ISPRS Journal of Photogrammetry and Remote Sensing. 152:34-48
In this paper, we propose a compressive sensing-based method to pan-sharpen the low-resolution multispectral (LRM) data, with the help of high-resolution panchromatic (HRP) data. In order to successfully implement the compressive sensing theory in pa
As an important topic in hyperspectral image (HSI) analysis, band selection has attracted increasing attention in the last two decades for dimensionality reduction in HSI. With the great success of deep learning (DL)-based models recently, a robust u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1571571de35173ad5ea67d23a98ec31f
http://dspace.lib.cranfield.ac.uk/handle/1826/16877
http://dspace.lib.cranfield.ac.uk/handle/1826/16877
Publikováno v:
Applied Sciences, Vol 10, Iss 8248, p 8248 (2020)
Applied Sciences
Volume 10
Issue 22
Applied Sciences
Volume 10
Issue 22
A typical pulsed thermography procedure results in a sequence of infrared images that reflects the evolution of temperature over time. Many features of defects, such as shape, position, and size, are derived from single image by image processing. Hen
Autor:
Ayan Chatterjee, Peter W. T. Yuen
Publikováno v:
IGARSS
Orthogonal Matching Pursuit (OMP) has proven itself to be a significant algorithm in image and signal processing domain in the last decade to estimate sparse representations in dictionary learning. Over the years, efforts to speed up the OMP algorith
Autor:
Peter Godfree, Chris McCullough, Changfeng Yuan, Ruben Moya Torres, Peter W. T. Yuen, Johathan Piper
Publikováno v:
Journal of Imaging
Volume 6
Issue 9
Journal of Imaging, Vol 6, Iss 87, p 87 (2020)
Volume 6
Issue 9
Journal of Imaging, Vol 6, Iss 87, p 87 (2020)
Despite the numerous band selection (BS) algorithms reported in the field, most if not all have exhibited maximal accuracy when more spectral bands are utilized for classification. This apparently disagrees with the theoretical model of the &lsquo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c23747524e42667d7eaac620bc87355
http://dspace.lib.cranfield.ac.uk/handle/1826/16017
http://dspace.lib.cranfield.ac.uk/handle/1826/16017