Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Peter Sudhölter"'
Publikováno v:
International Journal of Game Theory
International Journal of Game Theory, 2022, 51 (2), pp.431-450. ⟨10.1007/s00182-022-00835-y⟩
International Journal of Game Theory, 2022, 51 (2), pp.431-450. ⟨10.1007/s00182-022-00835-y⟩
International audience
Publikováno v:
SSRN Electronic Journal.
Autor:
Peter Sudhölter, Bas Dietzenbacher
Publikováno v:
International Journal of Game Theory, 51(2), 413-429. Springer
This paper formally introduces Hart–Mas-Colell consistency for general (possibly multi-valued) solutions for cooperative games with transferable utility. This notion is used to axiomatically characterize the core on the domain of convex games. More
Publikováno v:
Dipòsit Digital de la UB
Universidad de Barcelona
Calleja, P, Llerena, F & Sudhölter, P 2021, ' Constrained welfare egalitarianism in surplus-sharing problems ', Mathematical Social Sciences, vol. 109, no. January, pp. 45-51 . https://doi.org/10.1016/j.mathsocsci.2020.10.006
Universidad de Barcelona
Calleja, P, Llerena, F & Sudhölter, P 2021, ' Constrained welfare egalitarianism in surplus-sharing problems ', Mathematical Social Sciences, vol. 109, no. January, pp. 45-51 . https://doi.org/10.1016/j.mathsocsci.2020.10.006
We introduce the constrained egalitarian surplus-sharing rule fCE, which distributes an amount of a divisible resource so that the poorer agents’ resulting payoffs become equal but not larger than any remaining agent’s status quo payoff. We show
Autor:
Michel Grabisch, Peter Sudhölter
Publikováno v:
Mathematical Programming.
A balanced transferable utility game (N, v) has a stable core if its core is externally stable, that is, if each imputation that is not in the core is dominated by some core element. Given two payoff allocations x and y, we say that x outvotes y via
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
Hokari, T, Funaki, Y & Sudhölter, P 2020, ' Consistency, anonymity, and the core on the domain of convex games ', Review of Economic Design, vol. 24, no. 3-4, pp. 187-197 . https://doi.org/10.1007/s10058-020-00231-6
We show that neither Peleg’s nor Tadenuma’s well-known axiomatizations of the core by non-emptiness, individual rationality, super-additivity, and max consistency or complement consistency, respectively, hold when only convex rather than balanced
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f10b612bfa58b2644101ed1ed64f73b
https://findresearcher.sdu.dk:8443/ws/files/170671836/ROED_D_17_00055.pdf
https://findresearcher.sdu.dk:8443/ws/files/170671836/ROED_D_17_00055.pdf
Autor:
Bas Dietzenbacher, Peter Sudhölter
Publikováno v:
SSRN Electronic Journal.
This paper formally introduces Hart-Mas-Colell consistency for general (possibly multi-valued) solutions for cooperative games with transferable utility. This notion is used to axiomatically characterize the core on the domain of convex games. Moreov
Publikováno v:
Calleja, P, Llerena, F & Sudhölter, P 2021, ' Axiomatizations of Dutta-Ray's egalitarian solution on the domain of convex games ', Journal of Mathematical Economics, vol. 95, 102477 . https://doi.org/10.1016/j.jmateco.2021.102477
Dipòsit Digital de la UB
Universidad de Barcelona
Dipòsit Digital de la UB
Universidad de Barcelona
We show that on the domain of convex games, Dutta-Ray’s egalitarian solution is characterized by core selection, aggregate monotonicity, and bounded richness, a new property requiring that the poorest players cannot be made richer within the core.
Publikováno v:
Dipòsit Digital de la UB
Universidad de Barcelona
Calleja, P, Llerena, F & Sudholter, P 2020, ' Monotonicity and Weighted Prenucleoli : A Characterization without Consistency ', Mathematics of Operations Research, vol. 45, no. 3, pp. 1056-1068 . https://doi.org/10.1287/moor.2019.1022
Universidad de Barcelona
Calleja, P, Llerena, F & Sudholter, P 2020, ' Monotonicity and Weighted Prenucleoli : A Characterization without Consistency ', Mathematics of Operations Research, vol. 45, no. 3, pp. 1056-1068 . https://doi.org/10.1287/moor.2019.1022
A solution on a set of transferable utility (TU) games satisfies strong aggregate monotonicity (SAM) if every player can improve when the grand coalition becomes richer. It satisfies equal surplus division (ESD) if the solution allows the players to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e69ac13e3330129876889c297ee150c3
http://hdl.handle.net/2445/171456
http://hdl.handle.net/2445/171456