Zobrazeno 1 - 10
of 92
pro vyhledávání: '"Peter Poláčik"'
Autor:
Peter Poláčik
Publikováno v:
Journal of Differential Equations. 363:307-326
Autor:
Peter Poláčik, Antoine Pauthier
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 153:137-186
We continue our study of bounded solutions of the semilinear parabolic equation u t = u x x + f ( u ) on the real line, where f is a locally Lipschitz function on R . Assuming that the initial value u 0 = u ( ⋅ , 0 ) of the solution has finite limi
Autor:
Peter Poláčik, Darío A. Valdebenito
Publikováno v:
Journal of Dynamics and Differential Equations. 34:3035-3056
We consider the equation 1 $$\begin{aligned} \Delta _x u+u_{yy}+f(u)=0,\quad x=(x_1,\dots ,x_N)\in {{\mathbb {R}}}^N,\ y\in {{\mathbb {R}}}, \end{aligned}$$ where $$N\ge 2$$ and f is a sufficiently smooth function satisfying $$f(0)=0$$ , $$f'(0)
Autor:
Darío A. Valdebenito, Peter Poláčik
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :771-800
Autor:
Peter Poláčik
Publikováno v:
Proceedings of the American Mathematical Society. 148:2997-3008
We consider a class of semilinear heat equations on R \mathbb {R} , including in particular the Fujita equation u t = u x x + | u | p − 1 u , x ∈ R , t ∈ R , \begin{equation*} u_t=u_{xx} +|u|^{p-1}u,\quad x\in \mathbb {R},\ t\in \mathbb {R}, \e
Autor:
Peter Poláčik, Darío A. Valdebenito
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 13:1369-1393
We consider the equation \begin{document}$\Delta u+{{u}_{yy}}+f(x,u) = 0,\quad (x,y)\in {{\mathbb{R}}^{N}}\times \mathbb{R}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$ \end{document} where \begin{document}$ f $\end{document} is s
Autor:
Peter Poláčik, Hiroshi Matano
Publikováno v:
Communications in Partial Differential Equations. 45:483-524
We consider the Cauchy problem ut=uxx+f(u), x∈R,t>0,u(x,0)=u0(x), x∈R, where f is a C1 function on R with f(0)=0, and u0 is a nonnegative continuous function on R whose limits at ±∞ are equal to 0....
Autor:
Peter Poláčik, Darío A. Valdebenito
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 149:1435-1451
We consider a class of Schrödinger operators on ${\open R}^N$ with radial potentials. Viewing them as self-adjoint operators on the space of radially symmetric functions in $L^2({\open R}^N)$, we show that the following properties are generic with r
Autor:
Peter Poláčik, Darío A. Valdebenito
Publikováno v:
Journal of Functional Analysis. 282:109457
Autor:
Peter Poláčik
Publikováno v:
Memoirs of the American Mathematical Society. 264