Zobrazeno 1 - 10
of 117
pro vyhledávání: '"Peter Perry"'
Publikováno v:
Quarterly of Applied Mathematics. 78:33-73
Publikováno v:
Anal. PDE 13, no. 5 (2020), 1539-1578
We show that the derivative nonlinear Schr\"odinger (DNLS) equation is globally well-posed in the weighted Sobolev space $H^{2,2}(\mathbb{R})$. Our result exploits the complete integrability of DNLS and removes certain spectral conditions on the init
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8aeb7ceb94d56fe1e6fba155206a48ca
https://projecteuclid.org/euclid.apde/1600308062
https://projecteuclid.org/euclid.apde/1600308062
Publikováno v:
Communications in Partial Differential Equations. 43:1151-1195
We study the derivative nonlinear Schrodinger (DNLS) equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We sho...
Autor:
Russell M. Brown, Peter Perry
Publikováno v:
Nonlinearity. 31:4290-4325
Publikováno v:
Communications in Mathematical Physics. 363:1003-1049
We study the Derivative Nonlinear Schr\"odinger equation for generic initial data in a weighted Sobolev space that can support bright solitons (but exclude spectral singularities). Drawing on previous well-posedness results, we give a full descriptio
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 35:217-265
The large-time behavior of solutions to the derivative nonlinear Schr��dinger equation is established for initial conditions in some weighted Sobolev spaces under the assumption that the initial conditions do not support solitons. Our approach us
Autor:
Peter Perry
In an old farmhouse, four young children are visited at bedtime by two friendly dragons that only children can see. The children are amazed that dragons can talk, fly and make themselves invisible when they want to. Grown-ups cannot see dragons and t
Autor:
Peter Perry
Publikováno v:
Journées équations aux dérivées partielles. :1-17
Autor:
Peter Perry
Publikováno v:
Nonlinear Dispersive Partial Differential Equations and Inverse Scattering ISBN: 9781493998050
These notes are a considerably revised and expanded version of lectures given at the Fields Institute workshop on “Nonlinear Dispersive Partial Differential Equations and Inverse Scattering” in August 2017. These lectures, together with lectures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::447fee54b09cd94778a80771515db1e8
https://doi.org/10.1007/978-1-4939-9806-7_4
https://doi.org/10.1007/978-1-4939-9806-7_4
Publikováno v:
Communications in Partial Differential Equations. 41:1692-1760
We develop inverse scattering for the derivative nonlinear Schrodinger equation (DNLS) on the line using its gauge equivalence with a related nonlinear dispersive equation. We prove Lipschitz continuity of the direct and inverse scattering maps from