Zobrazeno 1 - 10
of 143
pro vyhledávání: '"Peter K. Friz"'
Autor:
PETER K. FRIZ, HUY TRAN
Publikováno v:
Forum of Mathematics, Sigma, Vol 5 (2017)
We revisit regularity of SLE trace, for all $\unicode[STIX]{x1D705}\neq 8$ , and establish Besov regularity under the usual half-space capacity parametrization. With an embedding theorem of Garsia–Rodemich–Rumsey type, we obtain finite moments (
Externí odkaz:
https://doaj.org/article/0143d76175ea4f9d99415da514561bae
Autor:
Peter K. Friz, Nicolas B. Victoir
Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Vara
Autor:
Peter K. Friz, Thomas Wagenhofer
In previous works Avellaneda et al. pioneered the pricing and hedging of index options - products highly sensitive to implied volatility and correlation assumptions - with large deviations methods, assuming local volatility dynamics for all component
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::29dae1e0b19ba82f3f1e5b624ced8d5d
http://arxiv.org/abs/2212.07817
http://arxiv.org/abs/2212.07817
Publikováno v:
Oberwolfach Reports. 17:1955-2019
We introduce the class of "smooth rough paths" and study their main properties. Working in a smooth setting allows us to discard sewing arguments and focus on algebraic and geometric aspects. Specifically, a Maurer-Cartan perspective is the key to a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81121ca86fa23aa9bc4824c7cca1c1da
https://depositonce.tu-berlin.de/handle/11303/17196
https://depositonce.tu-berlin.de/handle/11303/17196
Several asymptotic results for the implied volatility generated by a rough volatility model have been obtained in recent years (notably in the small-maturity regime), providing a better understanding of the shapes of the volatility surface induced by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22c48e4d98798a3780b78ba9637779db
Publikováno v:
Annals of Applied Probability
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2021, ⟨10.1214/20-AAP1608⟩
The Annals of Applied Probability
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2021, ⟨10.1214/20-AAP1608⟩
The Annals of Applied Probability
We present a new methodology to analyze large classes of (classical and rough) stochastic volatility models, with special regard to short-time and small noise formulae for option prices. Our main tool is the theory of regularity structures, which we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b483cd4b967bc6efe449d734ae8e2678
https://hdl.handle.net/2108/311643
https://hdl.handle.net/2108/311643
Publikováno v:
The Annals of Applied Probability
Ann. Appl. Probab. 30, no. 5 (2020), 2355-2392
Ann. Appl. Probab. 30, no. 5 (2020), 2355-2392
We take a pathwise approach to classical McKean–Vlasov stochastic differential equations with additive noise, as for example, exposed in Sznitmann (In École D’Été de Probabilités de Saint-Flour XIX—1989 (1991) 165–251, Springer). Our stud
Existence and uniqueness for rough flows, transport and continuity equations driven by general geometric rough paths are established.
20 pages
20 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b8aa2b15952fb3dc9b30773299700f4
http://arxiv.org/abs/2002.10432
http://arxiv.org/abs/2002.10432
This work is concerned with forest and cumulant type expansions of general random variables on a filtered probability spaces. We establish a "broken exponential martingale" expansion that generalizes and unifies the exponentiation result of Al{\`o}s,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f89c6f32efe42b4d05c2a7601983ad46
http://arxiv.org/abs/2002.01448
http://arxiv.org/abs/2002.01448