Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Peter J, Westervelt"'
Publikováno v:
The Journal of the Acoustical Society of America. 124:2533-2536
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 99:2513-2529
If it had not been for R. T. Beyer there would not have been papers by me and my students for JASA to reject. Why is this? He (and A. O. Williams) wrote most of my contract proposals and the associated progress reports. He and his students Stanton, B
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 125:2719-2719
When the displacement amplitude of an acoustic wave consisting of equal parts fundamental and second harmonic exceeds the diameter of a circular orifice, steady flow is generated whose direction is determined by the phase of th etwo wave components [
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 101:3079-3079
Eckart’s equation in the presence of the volume source density q is ⧠2[π+2(Ψ2),00]=ΓV,00−ρ0c0q,0. The interaction terms [(ρ0−ρ)c0q,0−qc0ρ,0] are absent, a consequence of ⧠2ρs=−ρ0c0q,0. If the approximate first‐order solution
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 98:2858-2858
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 97:3375-3375
Introducing the variable π=ρsc20+L+ΛV into Eq. (14) of Westervelt [P. J. Westervelt, 200 (1957)], two equivalent dissipationless wave equations are obtained for the scattered variable ρsc20: Eq. (1) is ⧠2[π+2(ψ2),00]=ΓV,00 and Eq. (2) is ⧠
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 97:3375-3375
The exact second‐order transient solution to the interaction of an arbitrary wave with a plane wave is given by Westervelt [P. J. Westervelt, 3320 (1994)]. Let the arbitrary wave be χ(x0−m⋅r), a plane wave traveling in the m direction. In this
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 96:3320-3320
Starting with Eckart’s equation for ρs the scattered density [P. J. Westervelt, J. Acoust. Soc. Am. 29, 934 (1957)], ⧠2ρsc20=⧠2E12 −∇2(2T12+ΛV12), the variables x0=c0t and ψ,0=−(4ρ0c20)−1/2p are introduced for which ⧠2ψ=0, ⧠2
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 96:3320-3320
Two arbitrary pulses p2(t−c−10x) and p1(t+c−10x) each of width c0τ pass through one another at x=0, generating a differential surface mass rate source density dσs(t,x)=qs dx where qs=Ad(p1p2)/dt and A= (ρ0c40)−1[2 + ρ0c0−2(d2p/dρ2)ρ0]
Autor:
Peter J. Westervelt
Publikováno v:
The Journal of the Acoustical Society of America. 95:3669-3669