Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Peter Hohler"'
Autor:
Larry Hoehn, David Singmaster, Costas Efthimiou, David M. Bloom, Leroy Quet, Murray Klamkin, José Luis Díaz-Barrero, Juan José Egozcue, Răazvan Gelca, Li Zhou, J. P. V. Abad, Michel Bataille, Alexander Blokh, Knut Dale, Robert L. Doucette, Daniele Donini, Natalio H. Guersenzvaig, Kee-Wai Lau, Kim McInturff, Michael Reid, Rolf Richberg, Heinz-Jüurgen Seiffert, Peng Gao, Murray S. Klamkin, J. C. Binz, Charles K. Cook, Joseph Coster, Charles R. Diminnie, Steve Edwards, James C. Hickman, Peter M. Jarvis, Elias Lampakis, Reiner Martin, Richard F. Melka, Yong Z. Chen, Greg Neumer, Sam L. Robinson, Gerald Thompson, Earl A. Smith, Irving C. Tang, Nora S. Thornber, Michael Vowe, Michael Woltermann, Geoffrey A. Kandall, Herb Bailey, Roy Barbara, Pierre Bornsztein, Gerald D. Brown, Scott H. Brown, Minh Can, Timothy V. Craine, Petar D. Drianov, Mordechai Falkowitz, Ovidiu Furdui, Michael Golomb, H. Guggenheimer, Peter Hohler, Samee Ullah Khan, Ken Korbin, Victor Y. Kutsenok, Matti Lehtinen, P. E. Nüesch, Achilleas Sinefakopoulos, Raul A. Simon, Alexey Vorobyov, Homer White, Peter Y. Woo, Hoe-Teck Wee, Philip D. Straffin, Keith Chavey, Marty Getz, Dixon Jones, Mark Kidwell, Jonathan Nilsson, Erwin Just, Brian D. Beasley, John Christopher, Kathleen E. Lewis, Allen J. Mauney, Kevin McDougal, Scott Parker, Jeremy Rouse, Phillip D. Straffin
Publikováno v:
Mathematics Magazine. 75:317
Autor:
Peter Hohler
Publikováno v:
Journal of Geometry. 2:161-174
A set of n-1 mutually orthogonal Latin squares of order n is a model of an affine plane with exactly n points on a line and every affine plane with n points on a line can be represented by n-1 mutually orthogonal Latin squares ([1]). In this paper we