Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Peter Gracar"'
Publikováno v:
Communications in Mathematical Physics. 395:859-906
We study geometric random graphs defined on the points of a Poisson process in $d$-dimensional space, which additionally carry independent random marks. Edges are established at random using the marks of the endpoints and the distance between points
The Emergence of a Giant Component in One-Dimensional Inhomogeneous Networks with Long-Range Effects
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031322952
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f11b7452a50fe4888aba6654fc67a62e
https://doi.org/10.1007/978-3-031-32296-9_2
https://doi.org/10.1007/978-3-031-32296-9_2
We investigate spatial random graphs defined on the points of a Poisson process in d-dimensional space, which combine scale-free degree distributions and long-range effects. Every Poisson point is assigned an independent weight. Given the weight and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e06b869201690ea732e348058d0f497
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030484774
WAW
WAW
Weight-dependent random connection graphs are a class of local network models that combine scale-free degree distribution, small-world properties and clustering. In this paper we discuss recurrence or transience of these graphs, features that are rel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::790d7ee65213f972f5858cea0fad8222
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/103791
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/103791
We investigate random graphs on the points of a Poisson process in $d$-dimensional space, which combine scale-free degree distributions and long-range effects. Every Poisson point carries an independent random mark and given marks and positions of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4b89f09c1ececbeb9719ff0686decea
Autor:
Peter Gracar, Alexandre Stauffer
Publikováno v:
Gracar, P & Stauffer, A 2019, ' Random walks in random conductances : decoupling and spread of infection ', Stochastic Processes and their Applications, vol. 129, no. 9, pp. 3547-3569 . https://doi.org/10.1016/j.spa.2018.09.016
Let $(G,\mu)$ be a uniformly elliptic random conductance graph on $\mathbb{Z}^d$ with a Poisson point process of particles at time $t=0$ that perform independent simple random walks. We show that inside a cube $Q_K$ of side length $K$, if all subcube
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5d2f699adeb3cf759cd266015b2f0dc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054854420&doi=10.1016/j.spa.2018.09.016&partnerID=40&md5=4fa7d5583078b21ddb7ef40d95b35147
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054854420&doi=10.1016/j.spa.2018.09.016&partnerID=40&md5=4fa7d5583078b21ddb7ef40d95b35147
Autor:
Alexandre Stauffer, Peter Gracar
Publikováno v:
Ann. Appl. Probab. 29, no. 1 (2019), 376-433
Gracar, P & Stauffer, A 2019, ' Multi-scale Lipschitz percolation of increasing events for Poisson random walks ', Annals of Applied Probability, vol. 29, no. 1, pp. 376-433 . https://doi.org/10.1214/18-AAP1420
Gracar, P & Stauffer, A 2019, ' Multi-scale Lipschitz percolation of increasing events for Poisson random walks ', Annals of Applied Probability, vol. 29, no. 1, pp. 376-433 . https://doi.org/10.1214/18-AAP1420
Consider the graph induced by $\mathbb{Z}^d$, equipped with uniformly elliptic random conductances. At time $0$, place a Poisson point process of particles on $\mathbb{Z}^d$ and let them perform independent simple random walks. Tessellate the graph i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::214ed050505303969b2924fb5ee4def2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058466856&doi=10.1214/18-AAP1420&partnerID=40&md5=23cd5d02931c6e36ab07fa6ae7d0a422
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058466856&doi=10.1214/18-AAP1420&partnerID=40&md5=23cd5d02931c6e36ab07fa6ae7d0a422
We investigate a class of growing graphs embedded into the d-dimensional torus where new vertices arrive according to a Poisson process in time, are randomly placed in space and connect to existing vertices with a probability depending on time, their
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff62ecd6aa802cbe5de42a7707398474