Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Peter Gaenssler"'
Publikováno v:
Results in Mathematics. 51:51-60
We describe in a coherent way a proof that the cdf of the supremum of a mean-zero Gaussian process is continuous and strictly increasing as soon as it is not degenerate at zero. The importance of both properties is illustrated by an application to st
Autor:
Peter Gaenssler, Jon A. Wellner
Publikováno v:
Wiley StatsRef: Statistics Reference Online.
Autor:
Peter Gaenssler, Daniel Rost
Publikováno v:
High Dimensional Probability II ISBN: 9781461271116
We consider function-indexed smoothed empirical measures on linear metric spaces and focus on uniform laws of large numbers (ULLN) comparable with Glivenko-Cantelli results in the non-smoothed case. Using the random measure process approach we are ab
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::34a4abeb898510f5374f797dcfe22131
https://doi.org/10.1007/978-1-4612-1358-1_6
https://doi.org/10.1007/978-1-4612-1358-1_6
Publikováno v:
High Dimensional Probability ISBN: 9783034897907
We consider function-indexed so-called Random Measure Processes (RMP’s) and focus especially on a uniform law of large numbers (ULLN) for RMP’s. Demonstrating both its power and its generality we apply it to derive a ULLN for smoothed empirical p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e22b8a088fdaee166589c86577ba63da
https://doi.org/10.1007/978-3-0348-8829-5_6
https://doi.org/10.1007/978-3-0348-8829-5_6
Autor:
Peter Gaenssler, Klaus Ziegler
Publikováno v:
Probability in Banach Spaces, 9 ISBN: 9781461266822
The purpose of the present paper is to establish a uniform law of large numbers (ULLN) in form of a Mean Glivenko-Cantelli result for so-called partial-sum processes with random locations and indexed by Vapnik-Chervonenkis classes (VCC) of sets in ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dc847d432565197974e34e6072e322ae
https://doi.org/10.1007/978-1-4612-0253-0_26
https://doi.org/10.1007/978-1-4612-0253-0_26
Autor:
Peter Gaenssler
Publikováno v:
Asymptotic Statistics ISBN: 9783790807707
Two important processes in probability and statistics are the empirical and partial-sum processes. The purpose of this paper is to presenta unified approach to both types of processes including their multi-variate versions by studying processes Sn=((
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cf316471011e6f4a0630bb954db640b0
https://doi.org/10.1007/978-3-642-57984-4_7
https://doi.org/10.1007/978-3-642-57984-4_7
Publikováno v:
Probability in Banach Spaces, 8: ISBN: 9780817636579
The purpose of the present paper is to establish a functional central limit theorem (FCLT) for partial-sum processes with random locations and indexed by Vapnik-Cervonenkis classes (VCC) of sets in arbitrary sample spaces. The context is as follows:
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b670de4bf497b79d0c7ec878aa2022fe
https://doi.org/10.1007/978-1-4612-0367-4_26
https://doi.org/10.1007/978-1-4612-0367-4_26
Autor:
Peter Gaenssler
Publikováno v:
Lecture Notes in Economics and Mathematical Systems ISBN: 9783540550037
The construction of confidence bands for an unknown distribution function (df) on the real line ℝ using Efron’s (1979) bootstrap procedure is well known through the work of Bickel and Freedman (1981). It is based on a central limit theorem for th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::689975a540213d0f5aa3c1f91f53e400
https://doi.org/10.1007/978-3-642-48850-4_7
https://doi.org/10.1007/978-3-642-48850-4_7
Autor:
Wilhelm Schneemeier, Peter Gaenssler
Publikováno v:
Probability in Banach Spaces 6 ISBN: 9781468467833
Let T = (T, d) be a pseudo-metric space assumed to be totally bounded for the pseudo-metric d. Let \({{\ell }^{\infty }}\) (T) be the space of all bounded real valued functions on T equipped with the supremum norm \(\left\| \cdot \right\|T\) (defined
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b5048832bf2e714fba40f9e1e1d0611c
https://doi.org/10.1007/978-1-4684-6781-9_5
https://doi.org/10.1007/978-1-4684-6781-9_5
Autor:
Konrad Joos, Peter Gaenssler
Publikováno v:
Stochastic Processes and their Applications. (2):181-197
Based on the martingale version of the Skorokhod embedding Heyde and Brown (1970) established a bound on the rate of convergence in the central limit theorem (CLT) for discrete time martingales having finite moments of order 2+2δ with 0 0 was proved