Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Peter A Wijeratne"'
Publikováno v:
PLoS Computational Biology, Vol 15, Iss 3, p e1006880 (2019)
[This corrects the article DOI: 10.1371/journal.pcbi.1006460.].
Externí odkaz:
https://doaj.org/article/238e55516df64f38a64fac9eb933411c
Publikováno v:
PLoS Computational Biology, Vol 14, Iss 10, p e1006460 (2018)
The delivery of blood-borne therapeutic agents to solid tumours depends on a broad range of biophysical factors. We present a novel multiscale, multiphysics, in-silico modelling framework that encompasses dynamic tumour growth, angiogenesis and drug
Externí odkaz:
https://doaj.org/article/cbdb20f4235643259a3ed712e4835f53
Autor:
Vasileios Vavourakis, Peter A Wijeratne, Rebecca Shipley, Marilena Loizidou, Triantafyllos Stylianopoulos, David J Hawkes
Publikováno v:
PLoS Computational Biology, Vol 13, Iss 1, p e1005259 (2017)
Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with w
Externí odkaz:
https://doaj.org/article/c4fbc4fbe6f949f588416499f79b82ba
Autor:
Peter A Wijeratne, John H Hipwell, David J Hawkes, Triantafyllos Stylianopoulos, Vasileios Vavourakis
Publikováno v:
PLoS ONE, Vol 12, Iss 9, p e0184511 (2017)
We present an in-silico model of avascular poroelastic tumour growth coupled with a multiscale biphasic description of the tumour-host environment. The model is specified to in-vitro data, facilitating biophysically realistic simulations of tumour sp
Externí odkaz:
https://doaj.org/article/8926bc3ca3e5410fa3f2a3cb70894d5c
Autor:
Yuya SAITO, Peter A. WIJERATNE, Koji KAMAGATA, Christina ANDICA, Wataru UCHIDA, Toshiaki AKASHI, Akihiko WADA, Masaaki HORI, Shigeki AOKI
Publikováno v:
Japanese Journal of Magnetic Resonance in Medicine.
Autor:
Maitrei Kohli, Dorian Pustina, John H Warner, Daniel C Alexander, Rachael I Scahill, Sarah J Tabrizi, Peter A Wijeratne
Publikováno v:
E: Imaging.
Autor:
Amrita Mohan, Jane S. Paulsen, Sarah J. Tabrizi, Nellie Georgiou-Karistianis, Rachael I. Scahill, Sarah Gregory, Track-Hd Investigators, Cristina Sampaio, Hans J. Johnson, Govinda Poudel, Arman Eshaghi, Peter A. Wijeratne, Daniel C. Alexander, Predict-Hd Image-Hd, Leon M Aksman, Eileanoir B. Johnson
Publikováno v:
Annals of Neurology
OBJECTIVE The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD). We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of imaging marke
Autor:
Yuya Saito, Koji Kamagata, Peter A. Wijeratne, Christina Andica, Wataru Uchida, Kaito Takabayashi, Shohei Fujita, Toshiaki Akashi, Akihiko Wada, Keigo Shimoji, Masaaki Hori, Yoshitaka Masutani, Daniel C. Alexander, Shigeki Aoki
Publikováno v:
Frontiers in Neurology. 13
Differentiating corticobasal degeneration presenting with corticobasal syndrome (CBD-CBS) from progressive supranuclear palsy with Richardson's syndrome (PSP-RS), particularly in early stages, is often challenging because the neurodegenerative condit
Autor:
Arman Eshaghi, Peter A Wijeratne, Neil P Oxtoby, Douglas L Arnold, Louis Collins, Sridar Narayanan, Charles R. G. Guttmann, Alan J Thompson, Daniel C Alexander, Frederik Barkhof, Declan Chard, Olga Ciccarelli
Multiple sclerosis is a heterogeneous disease with an unpredictable course. We applied machine learning to generate individualised risk scores of disability worsening and stratify patients into subgroups with different prognosis.Clinical data and MRI
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fbdf51a4fe5c615e8d8a28e310d4e465
https://doi.org/10.1101/2022.02.03.22270364
https://doi.org/10.1101/2022.02.03.22270364
Autor:
Alexandra L. Young, Jacob W. Vogel, Leon M. Aksman, Peter A. Wijeratne, Arman Eshaghi, Neil P. Oxtoby, Steven C. R. Williams, Daniel C. Alexander, for the Alzheimer’s Disease Neuroimaging Initiative
Publikováno v:
Frontiers in Artificial Intelligence, Vol 4 (2021)
Frontiers in Artificial Intelligence
Frontiers in Artificial Intelligence
Subtype and Stage Inference (SuStaIn) is an unsupervised learning algorithm that uniquely enables the identification of subgroups of individuals with distinct pseudo-temporal disease progression patterns from cross-sectional datasets. SuStaIn has bee