Zobrazeno 1 - 10
of 164
pro vyhledávání: '"Peter Šemrl"'
Autor:
Michiya Mori, Peter Šemrl
Publikováno v:
Canadian Journal of Mathematics. 75:912-944
The classical Loewner’s theorem states that operator monotone functions on real intervals are described by holomorphic functions on the upper half-plane. We characterize local order isomorphisms on operator domains by biholomorphic automorphisms of
Autor:
Matej Brešar, Peter Šemrl
Let $f$ bea noncommutativepolynomial of degree $m\ge 1$ over an algebraically closed field $F$ of characteristic $0$. If $n\ge m-1$ and $\alpha_1,\alpha_2,\alpha_3$ are nonzero elements from $F$ such that $\alpha_1+\alpha_2+\alpha_3=0$, then every tr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::11fd1cd58172f5d5ad8c2d1830bb15d4
http://arxiv.org/abs/2302.05106
http://arxiv.org/abs/2302.05106
Autor:
Peter Šemrl, Matej Brešar
Publikováno v:
Linear and Multilinear Algebra and Function Spaces. :195-213
Autor:
Peter Šemrl
Publikováno v:
Journal of Algebra. 536:1-38
Let D be a division ring, n ≥ 3 an integer, and P n ( D ) the poset of all n × n idempotent matrices over D with the partial order defined by P ≤ Q if P Q = Q P = P . Let T ∈ M n ( D ) be an invertible matrix and σ : D → D an endomorphism (
Autor:
Matej Brešar, Peter Šemrl
Publikováno v:
Linear Algebra and its Applications. 568:29-38
If a continuous function f : M n ( C ) → M n ( C ) satisfies f ( x ) x = x f ( x ) for all x ∈ M n ( C ) , then there exist functions a 0 , a 1 , … , a n − 1 : M n ( C ) → C such that f ( x ) = ∑ j = 0 n − 1 a j ( x ) x j for all x ∈
Autor:
Clément de Seguins Pazzis, Peter Šemrl
Publikováno v:
Advances in Geometry. 18:385-393
We prove that every continuous map acting on the four-dimensional Minkowski space and preserving light cones in one direction only is either a Poincar\'e similarity, that is, a product of a Lorentz transformation and a dilation, or it is of a very sp
Autor:
Peter Šemrl
Publikováno v:
Acta Scientiarum Mathematicarum. 84:125-136
Autor:
Peter Šemrl
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 54:315301
We prove an optimal version of Wigner's unitary-antiunitary theorem. The main tool in our proof is Gleason's theorem.
Autor:
Peter Šemrl
Publikováno v:
Canadian Journal of Mathematics. 69:1422-1435
We describe the general form of surjective maps on the cone of all positive operators that preserve order and spectrum. The result is optimal as shown by counterexamples. As an easy consequence, we characterize surjective order and spectrum preservin