Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Perla Menzala, G."'
Autor:
Perla Menzala, G., Sejje Suárez, J.
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 January 2014 409(1):56-73
Publikováno v:
In Physica D: Nonlinear Phenomena 2005 204(1):122-133
Publikováno v:
Asymptotic Analysis. 2004, Vol. 38 Issue 2, p167-185. 19p.
Autor:
Kapitonov, Boris V.1, Perla Menzala, G.2,3
Publikováno v:
Asymptotic Analysis. 2001, Vol. 26 Issue 2, p91-104. 14p.
Autor:
Perla Menzala, G., Zuazua, E.
Publikováno v:
In Applied Mathematics Letters 1999 12(1):47-52
Autor:
Perla Menzala, G.1, Zuazua, Enrique2
Publikováno v:
Asymptotic Analysis. 1998, Vol. 18 Issue 3/4, p349-362. 14p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Buriol, C., Perla Menzala, G.
Publikováno v:
Differential Integral Equations 19, no. 1 (2006), 15-29
We consider a class of nonlinear beam equations in the whole space $\mathbb R^n$. Using previous important work due to Levandovsky and Strauss we prove that, locally, the $H^1$-norm of a strong solution approaches zero as $t \to +\infty$ as long as t
Autor:
Perla Menzala, G., Zuazua, E.
Publikováno v:
Differential Integral Equations 11, no. 5 (1998), 755-770
We consider the dynamical von K\'arm\'an system describing the nonlinear vibrations of a thin plate. We take into account thermal effects as well as a rotational inertia term in the system. Our main result states that the total energy of the system,
Autor:
Lange, H., Perla Menzala, G.
Publikováno v:
Differential Integral Equations 10, no. 6 (1997), 1075-1092
We consider a beam equation with a nonlocal nonlinearity of Kirchhoff type on an unbounded domain. We show that smooth global solutions decay (in time) at a uniform rate as $t\to +\infty$. Our model is closely related to a nonlinear Schrödinger equa