Zobrazeno 1 - 10
of 2 337
pro vyhledávání: '"Periodic orbit"'
Autor:
Maurıicio F. S. Lima, Jaume Llibre
Publikováno v:
Electronic Research Archive, Vol 32, Iss 7, Pp 4604-4613 (2024)
The subject of this paper concerns with the bifurcation of limit cycles for a predator-prey model with small immigration. Since, in general, the biological systems are not isolated, taking into account immigration in the model becomes more realistic.
Externí odkaz:
https://doaj.org/article/80b23d3bdfd44f058108d76ba8d16c59
Limit cycle bifurcation from a zero-Hopf equilibrium for a class of 3-dimensional Kolmogorov systems
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 11, Iss , Pp 100810- (2024)
A zero-Hopf equilibrium point p of a 3-dimensional autonomous differential system in R3 is an equilibrium point such that the eigenvalues of the linear part of the system at p are 0 and ±ωi with ω≠0. A zero-Hopf bifurcation takes place when from
Externí odkaz:
https://doaj.org/article/cc8c0b70ffe2446bbe885f1712ca16ed
Publikováno v:
Results in Physics, Vol 60, Iss , Pp 107637- (2024)
Recent literature has stated that the physical characteristics of natural satellites in Jupiter’s Ananke and Carme groups, such as mass, exhibit the same statistical law, with the best-fitting distribution being a Loglogistic distribution. This pap
Externí odkaz:
https://doaj.org/article/0ec09cfeaa4b4b85a333b793aa1aa5f2
Autor:
Tabet Achref Eddine, Makhlouf Amar
Publikováno v:
Nonautonomous Dynamical Systems, Vol 10, Iss 1, Pp 103-111 (2023)
In this article, we provide sufficient conditions for the existence of periodic solutions for the polynomial differential system of the form x˙=−y+εP1(x,y,z,u,v)+h1(t),y˙=x+εP2(x,y,z,u,v)+h2(t),z˙=−u+εP3(x,y,z,u,v)+h3(t),u˙=z+εP4(x,y,z,u,
Externí odkaz:
https://doaj.org/article/722bf236315d4e658856930612eca934
Publikováno v:
Âderna Fìzika ta Energetika, Vol 24, Iss 3, Pp 175-192 (2023)
Level density ρ is derived for a finite system with strongly interacting nucleons at a given energy E, neutron N, and proton Z particle numbers, projection of the angular momentum M, and other integrals of motion, within the semiclassical periodic-o
Externí odkaz:
https://doaj.org/article/6bae6bef6d0a48fa8be398a6d84bd09c
Autor:
Huanyu Cao, Yueheng Lan
Publikováno v:
Results in Physics, Vol 58, Iss , Pp 107514- (2024)
The conventional perturbation theory encounters formidable challenges when applied to the quantitative analysis or computation of chaotic systems, due to possibly numerous bifurcations as system parameters vary. In this manuscript, however, based on
Externí odkaz:
https://doaj.org/article/83038a22b55a472bb05f30f532811049
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 9, Iss , Pp 100622- (2024)
This paper focuses on investigating the maximum number of limit cycles bifurcating from the periodic orbits adapted to the cubic system given by ẋ=y−yx+a2,ẏ=−x+xx+a2,where a is a positive number with a≠1. The study specifically examines the
Externí odkaz:
https://doaj.org/article/6f24f09d90354e1695c4c95f8d9b1e6c
Publikováno v:
Arab Journal of Mathematical Sciences, 2022, Vol. 29, Issue 1, pp. 2-13.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/AJMS-07-2020-0024
Publikováno v:
Mathematics, Vol 12, Iss 13, p 2018 (2024)
Based on the Ψ-functions series method, a new numerical integration method for perturbed and damped second-order systems of differential equations is presented. This multistep method is defined for variable step and variable order (VSVO) and maintai
Externí odkaz:
https://doaj.org/article/c72da97450c24002b23b74675a56796f