Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Periodic Sobolev spaces"'
Publikováno v:
Selecciones Matemáticas, Vol 7, Iss 01, Pp 52-73 (2020)
In this article, we first prove that the initial value problem associated to the homogeneous wave equation in periodic Sobolev spaces has a global solution and the solution has continuous dependence with respect to the initial data, in [0; T], T > 0.
Externí odkaz:
https://doaj.org/article/ca7201bd6a8041ac804811895e394473
Publikováno v:
Selecciones Matemáticas, Vol 7, Iss 01, Pp 74-96 (2020)
We will begin our study, focusing on the theory of periodic Sobolev spaces, for this we cite [1]. Then, we will prove that the non-homogeneous Boussinesq equation has a local solution and that the solution also continually depends on the initial data
Externí odkaz:
https://doaj.org/article/a7f7884672bd4032bdaf7388e540abf3
Autor:
Vincenzo Ambrosio
Publikováno v:
Opuscula Mathematica, Vol 40, Iss 1, Pp 5-20 (2020)
In this note we extend the well-known limiting formulas due to Bourgain-Brezis-Mironescu and Maz'ya-Shaposhnikova, to the setting of fractional Sobolev spaces on the torus. We also give a \(\Gamma\)-convergence result in the spirit of Ponce. The main
Externí odkaz:
https://doaj.org/article/5e6d6ac3e5d54966aeb10cf37391e00f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Pesquimat; Vol. 25 No. 2 (2022); 1-15
Pesquimat; Vol. 25 Núm. 2 (2022); 1-15
Pesquimat; Vol. 25 Núm. 2 (2022); 1-15
We study the well posedness global of the nonlinear Cauchy problem associated with the periodic one-dimensional Burgers equation in the periodic Sobolev spaces Hsper. We do this using Semigroup theory, Fourier theory on periodic distributions and inm
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Selecciones Matemáticas; Vol. 8 Núm. 01 (2021): Enero-Julio; 37-51
Selecciones Matemáticas; Vol. 8 No. 01 (2021): January-July; 37-51
Selecciones Matemáticas; v. 8 n. 01 (2021): Janeiro-julho; 37-51
Revistas Universidad Nacional de Trujillo
Universidad Nacional de Trujillo
instacron:UNITRU
Selecciones Matemáticas; Vol. 8 No. 01 (2021): January-July; 37-51
Selecciones Matemáticas; v. 8 n. 01 (2021): Janeiro-julho; 37-51
Revistas Universidad Nacional de Trujillo
Universidad Nacional de Trujillo
instacron:UNITRU
In this articlewe prove that the Cauchy problemassociated to the Schrödinger equation in periodic Sobolevspaces is well posed. We do this in an intuitiveway using Fourier theory and in a fine version using Groupstheory, inspired by works Iorio [3],
Publikováno v:
Pesquimat; Vol. 23 No. 1 (2020); 17-31
Pesquimat; Vol. 23 Núm. 1 (2020); 17-31
Revistas Universidad Nacional Mayor de San Marcos
Universidad Nacional Mayor de San Marcos
instacron:UNMSM
Pesquimat; Vol. 23 Núm. 1 (2020); 17-31
Revistas Universidad Nacional Mayor de San Marcos
Universidad Nacional Mayor de San Marcos
instacron:UNMSM
In this work we study the existence, uniqueness and continuous dependence of the solution of the KdV-Kuramoto-Sivashinsky homogeneous linear equation in periodic Sobolev spaces. We do this using semigroup theory and Fourier theory on periodic distrib
Publikováno v:
Pesquimat; Vol. 23 Núm. 1 (2020); 17-31
Pesquimat; Vol 23 No 1 (2020); 17-31
Pesquimat; Vol 23 No 1 (2020); 17-31
In this work we study the existence, uniqueness and continuous dependence of the solution of the KdV-Kuramoto-Sivashinsky homogeneous linear equation in periodic Sobolev spaces. We do this using semigroup theory and Fourier theory on periodic distrib
Publikováno v:
Selecciones Matemáticas; Vol. 7 Núm. 01 (2020): Enero-Julio; 74-96
Selecciones Matemáticas; Vol. 7 No. 01 (2020): Enero-Julio; 74-96
Selecciones Matemáticas; v. 7 n. 01 (2020): Enero-Julio; 74-96
Revistas Universidad Nacional de Trujillo
Universidad Nacional de Trujillo
instacron:UNITRU
Selecciones Matemáticas; Vol. 7 No. 01 (2020): Enero-Julio; 74-96
Selecciones Matemáticas; v. 7 n. 01 (2020): Enero-Julio; 74-96
Revistas Universidad Nacional de Trujillo
Universidad Nacional de Trujillo
instacron:UNITRU
We will begin our study, focusing on the theory of periodic Sobolev spaces, for this we cite [1]. Then, we will prove that the non-homogeneous Boussinesq equation has a local solution and that the solution also continually depends on the initial data
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::03d68cd1f8daa827a6577a4d17fbd1d1
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2958
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2958