Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Perez, Roberto Ferreiro"'
Autor:
Pérez, Roberto Ferreiro
If {\omega} is a closed G-invariant 2-form and {\mu} a moment map, then we obtain necessary and sufficient conditions for equivariant pre-quantizability that can be computed in terms of the moment map {\mu}. We also compute the obstructions to lift t
Externí odkaz:
http://arxiv.org/abs/2009.08713
Autor:
Pérez, Roberto Ferreiro
Publikováno v:
Algebr. Geom. Topol. 21 (2021) 1911-1940
We construct Chern-Simons bundles as $\mathrm{Aut}^{+}P$-equivariant $U(1)$ -bundles with connection over the space of connections $\mathcal{A}_{P}$ on a principal $G$-bundle $P\rightarrow M$. We show that the Chern-Simons bundles are determined up t
Externí odkaz:
http://arxiv.org/abs/1907.00292
Autor:
Perez, Roberto Ferreiro
Publikováno v:
Differential Geom. Appl. 66 (2019) 1--12
We define the equivariant holonomy of an invariant connection on a principal U(1)-bundle. The properties of the ordinary holonomy are generalized to the equivariant setting. In particular, equivariant U(1)-bundles with connection are shown to be clas
Externí odkaz:
http://arxiv.org/abs/1905.02664
Autor:
Pérez, Roberto Ferreiro
We obtain necesary and sufficient conditions for gravitational anomaly cancellation. We show that perturbative gravitational anomalies can never be cancelled. In a similar way, in dimensions $n\neq3\operatorname{mod}4$ it is impossible to cancell glo
Externí odkaz:
http://arxiv.org/abs/1805.12068
Autor:
Pérez, Roberto Ferreiro
Publikováno v:
J. Geom. Phys., 133 (2018), pp. 102-112
A notion of local section of the determinant line bundle is defined giving necessary and suficient conditions for anomaly cancellation compatible with locality. This definition gives an intrinsic geometrical interpretation of the local counterterms a
Externí odkaz:
http://arxiv.org/abs/1805.07122
Publikováno v:
Letters in Mathematical Physics 2018
Let $\pi\colon P\to M$ be a principal bundle and $p$ an invariant polynomial of degree r on the Lie algebra of the structure group. The theory of Chern-Simons differential characters is exploited to define an homology map $\chi^{k} : H_{2r-k-1}(M)\ti
Externí odkaz:
http://arxiv.org/abs/1711.06995
Autor:
Perez, Roberto Ferreiro
Publikováno v:
Annali di Matematica Pura ed Applicata 2018
We show how characteristic classes determine equivariant prequantization bundles over the space of connections on a principal bundle. These bundles are shown to generalize the Chern-Simons line bundles to arbitrary dimensions. Our result applies to a
Externí odkaz:
http://arxiv.org/abs/1703.05832
Autor:
Pérez, Roberto Ferreiro
Publikováno v:
Class.Quant.Grav.27:135015,2010
The Chern-Simons lagrangian density in the space of metrics of a 3-dimensional manifold M is not invariant under the action of diffeomorphisms on M. However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is invariant und
Externí odkaz:
http://arxiv.org/abs/1004.3161
Publikováno v:
SIGMA 5 (2009), 063, 7 pages
Two examples of $\mathrm{Diff}^+S^1$-invariant closed two-forms obtained from forms on jet bundles, which does not admit equivariant moment maps are presented. The corresponding cohomological obstruction is computed and shown to coincide with a nontr
Externí odkaz:
http://arxiv.org/abs/0906.2988
Autor:
Perez, Roberto Ferreiro
Publikováno v:
Commun.Math.Phys.286:445-458,2009
The locality conditions for the vanishing of local anomalies in field theory are shown to admit a geometrical interpretation in terms of local equivariant cohomology, thus providing a method to deal with the problem of locality in the geometrical app
Externí odkaz:
http://arxiv.org/abs/math-ph/0607005