Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Perez, Otávio Henrique."'
The main goal of this paper is to give a complete fractal analysis of piecewise smooth (PWS) slow-fast Li\'{e}nard equations. For the analysis, we use the notion of Minkowski dimension of one-dimensional orbits generated by slow relation functions. M
Externí odkaz:
http://arxiv.org/abs/2412.09713
The main goal of this paper is to study compactifications of polynomial slow-fast systems. More precisely, the aim is to give conditions in order to guarantee normal hyperbolicity at infinity of the Poincar\'e-Lyapunov sphere for slow-fast systems de
Externí odkaz:
http://arxiv.org/abs/2401.06239
Given a planar polynomial vector field $X$ with a fixed Newton polytope $\mathcal{P}$, we prove (under some non degeneracy conditions) that the monomials associated to the upper boundary of $\mathcal{P}$ determine (under topological equivalence) the
Externí odkaz:
http://arxiv.org/abs/2312.00217
We studied piecewise smooth differential systems of the form $$\dot{z} = Z(z) = \dfrac{1 + \operatorname{sgn}(F)}{2}X(z) + \dfrac{1 - \operatorname{sgn}(F)}{2}Y(z),$$ where $F: \mathbb{R}^{n}\rightarrow \mathbb{R}$ is a smooth map having 0 as a regul
Externí odkaz:
http://arxiv.org/abs/2205.02263
Publikováno v:
In Journal of Differential Equations 5 November 2024 408:230-253
This paper concerns the local study of analytic constrained differential systems (or impasse systems) of the form $A(x)\dot{x} = F(x)$, $x\in\mathbb{R}^{2}$, where $F$ is a vector field and $A$ is a matrix valued function. Using techniques of resolut
Externí odkaz:
http://arxiv.org/abs/2105.04748
We present a theorem of resolution of singularities for real analytic constrained differential systems $A(x)\dot{x} = F(x)$ defined on a 2-manifold with corners having impasse set $\{x; \det A(x) = 0\}$. This result can be seen as a generalization of
Externí odkaz:
http://arxiv.org/abs/2012.00085
We study flows of smooth vector fields $X$ over invariant surfaces $M$ which are levels of rational first integrals. It leads us to study constrained systems, that is, systems with impasses. We identify a subset $\mathcal{I} \subset M$ which we call
Externí odkaz:
http://arxiv.org/abs/2001.01741
Autor:
Perez, Otávio Henrique.
Orientador: Tiago de Carvalho
Banca: Paulo Ricardo da Silva
Banca: Durval José Tonon
Neste trabalho iremos abordar aspectos qualitativos e geométricos a respeito de campos de vetores suaves por partes. Nosso foco será estudar bifurc
Banca: Paulo Ricardo da Silva
Banca: Durval José Tonon
Neste trabalho iremos abordar aspectos qualitativos e geométricos a respeito de campos de vetores suaves por partes. Nosso foco será estudar bifurc
Externí odkaz:
http://hdl.handle.net/11449/148944
Publikováno v:
In Bulletin des sciences mathématiques October 2022 179