Zobrazeno 1 - 10
of 191
pro vyhledávání: '"Peral Ireneo"'
Publikováno v:
Advances in Nonlinear Analysis, Vol 4, Iss 2, Pp 91-107 (2015)
In this note, we will study the problem (-Δ)psu = f(x) on Ω, u = 0 in ℝN∖Ω, where 0 < s < 1, (-Δ)ps is the nonlocal p-Laplacian defined below, Ω is a smooth bounded domain. The main point studied in this work is to prove, adapting the techni
Externí odkaz:
https://doaj.org/article/14edc666abcc4a728ba0ac8175e36b1d
Publikováno v:
Open Mathematics, Vol 13, Iss 1 (2015)
The aim of this paper is to study the solvability of the problem
Externí odkaz:
https://doaj.org/article/1c41bb65905b4de5a72ea60993302dd3
In this paper, we study the existence of distributional solutions of the following non-local elliptic problem \begin{eqnarray*} \left\lbrace \begin{array}{l} (-\Delta)^{s}u + |\nabla u|^{p} =f \quad\text{ in } \Omega \qquad \qquad \qquad \,\,\, u=0 \
Externí odkaz:
http://arxiv.org/abs/2003.13069
In this work we study the existence of positive solution to the fractional quasilinear problem, $$ \left\{ \begin{array}{rcll} (-\Delta )^s u &=&\lambda \dfrac{u}{|x|^{2s}}+ |\nabla u|^{p}+ \mu f &\inn \Omega,\\ u&>&0 & \inn\Omega,\\ u&=&0 & \inn(\ma
Externí odkaz:
http://arxiv.org/abs/2002.02201
In this work, we are interested on the study of the Fujita exponent and the meaning of the blow-up for the Fractional Cauchy problem with the Hardy potential, namely, \begin{equation*} u_t+(-\Delta)^s u=\lambda\dfrac{u}{|x|^{2s}}+u^{p}\inn\ren,\\ u(x
Externí odkaz:
http://arxiv.org/abs/1911.07578
In this work we analyze the existence of solutions to the fractional quasilinear problem, $$ (P) \left\{ \begin{array}{rcll} u_t+(-\Delta )^s u &=&|\nabla u|^{\alpha}+ f &\inn \Omega_T\equiv\Omega\times (0,T),\\ u(x,t)&=&0 & \inn(\mathbb{R}^N\setminu
Externí odkaz:
http://arxiv.org/abs/1904.04593
Attainability of the fractional Hardy constant with nonlocal mixed boundary conditions. Applications
The first goal of this paper is to study necessary and sufficient conditions to obtain the attainability of the \textit{fractional Hardy inequality } $$\Lambda_{N}\equiv\Lambda_{N}(\Omega):=\inf_{\{\phi\in \mathbb{E}^s(\Omega, D), \phi\neq 0\}} \dfra
Externí odkaz:
http://arxiv.org/abs/1709.08399
The aim goal of this paper is to treat the following problem \begin{equation*} \left\{ \begin{array}{rcll} u_t+(-\D^s_{p}) u &=&\dyle \l \dfrac{u^{p-1}}{|x|^{ps}} & \text{ in } \O_{T}=\Omega \times (0,T), \\ u&\ge & 0 & \text{ in }\ren \times (0,T),
Externí odkaz:
http://arxiv.org/abs/1703.03299
We analyze the behavior of the eigenvalues of the following non local mixed problem $\left\{ \begin{array}{rcll} (-\Delta)^{s} u &=& \lambda_1(D) \ u &\inn\Omega,\\ u&=&0&\inn D,\\ \mathcal{N}_{s}u&=&0&\inn N. \end{array}\right $ Our goal is to const
Externí odkaz:
http://arxiv.org/abs/1702.07644
Publikováno v:
In Journal of Differential Equations 5 March 2022 312:65-147