Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Pera Maria Patrizia"'
This paper aims to provide a careful and self-contained introduction to the theory of topological degree in Euclidean spaces. It is intended for people mostly interested in analysis and, in general, a heavy background in algebraic or differential top
Externí odkaz:
http://arxiv.org/abs/2304.06463
We study, by means of a topological approach, the forced oscillations of second order functional retarded differential equations subject to periodic perturbations. We consider a delay-type functional dependence involving a gamma probability distribut
Externí odkaz:
http://arxiv.org/abs/2205.12758
We study the persistence of eigenvalues and eigenvectors of perturbed eigenvalue problems in Hilbert spaces. We assume that the unperturbed problem has a nontrivial kernel of odd dimension and we prove a Rabinowitz-type global continuation result. Th
Externí odkaz:
http://arxiv.org/abs/2101.02910
We extend to the infinite dimensional context the link between two completely different topics recently highlighted by the authors: the classical eigenvalue problem for real square matrices and the Brouwer degree for maps between oriented finite dime
Externí odkaz:
http://arxiv.org/abs/2006.15539
We consider the nonlinear eigenvalue problem $Lx + \varepsilon N(x) = \lambda Cx$, $\|x\|=1$, where $\varepsilon,\lambda$ are real parameters, $L, C\colon G \to H$ are bounded linear operators between separable real Hilbert spaces, and $N\colon S \to
Externí odkaz:
http://arxiv.org/abs/1912.07021
Thanks to a connection between two completely different topics, the classical eigenvalue problem in a finite dimensional real vector space and the Brouwer degree for maps between oriented differentiable real manifolds, we were able to solve, at least
Externí odkaz:
http://arxiv.org/abs/1912.03182
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations. 2023, p1-23. 23p.
Publikováno v:
Advanced Nonlinear Studies, Vol 19, Iss 1, Pp 149-163 (2019)
We study global continuation properties of the set of T-periodic solutions of parameterized second order delay differential equations with constant time lag on smooth manifolds. We apply our results to get multiplicity of T-periodic solutions. Our to
Externí odkaz:
https://doaj.org/article/e851a686c5fc4550a53ec7e6fc7a8580
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.