Zobrazeno 1 - 10
of 129
pro vyhledávání: '"Peperko, Aljoša"'
Autor:
Bogdanović, Katarina, Peperko, Aljoša
We prove new monotonicity properties for spectral radius, essential spectral radius, operator norm, Hausdorff measure of non-compactness and numerical radius of products and sums of weighted geometric symmetrizations of positive kernel operators on $
Externí odkaz:
http://arxiv.org/abs/2408.04357
Autor:
Voglar, Jure, Peperko, Aljoša
The article presents the mathematical sequences describing circle packing densities in four different geometric configurations involving a hexagonal lattice based equal circle packing in the Euclidian plane. The calculated sequences take form of eith
Externí odkaz:
http://arxiv.org/abs/2403.10530
Autor:
Bogdanović, Katarina, Peperko, Aljoša
We prove new inequalities and equalities for the generalized and the joint spectral radius (and their essential versions) of Hadamard (Schur) geometric means of bounded sets of positive kernel operators on Banach function spaces. In the case of nonne
Externí odkaz:
http://arxiv.org/abs/2202.02325
Autor:
Müller, Vladimir, Peperko, Aljoša
Several spectral radii formulas for infinite bounded nonnegative matrices in max algebra are obtained. We also prove some Perron-Frobenius type results for such matrices. In particular, we obtain results on block triangular forms, which are similar t
Externí odkaz:
http://arxiv.org/abs/2201.02123
Autor:
Bogdanović, Katarina, Peperko, Aljoša
We prove new inequalities for the spectral radius, essential spectral radius, operator norm, measure of noncompactness and numerical radius of Hadamard weighted geometric means of positive kernel operators on Banach function and sequence spaces. Seve
Externí odkaz:
http://arxiv.org/abs/2107.09459
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Peperko, Aljoša
We prove an uniform boundedness principle for the Lipschitz seminorm of continuous, monotone, positively homogeneous and subadditive mappings on suitable cones of functions. The result is applicable to several classes of classically non-linear operat
Externí odkaz:
http://arxiv.org/abs/1803.04293
Recently, in a work that grew out of their exploration of interlacing polynomials, Marcus, Spielman and Srivastava and then Marcus studied certain combinatorial polynomial convolutions. These convolutions preserve real-rootedness and capture expectat
Externí odkaz:
http://arxiv.org/abs/1802.07373
Publikováno v:
In Linear Algebra and Its Applications 15 May 2022 641:115-142
Autor:
Müller, Vladimir, Peperko, Aljoša
We study Lipschitz, positively homogeneous and finite suprema preserving mappings defined on a max-cone of positive elements in a normed vector lattice. We prove that the lower spectral radius of such a mapping is always a minimum value of its approx
Externí odkaz:
http://arxiv.org/abs/1712.00340