Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Pent K"'
Autor:
Jürison M; Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia. Electronic address: margret.jyrison@emu.ee., Pent K; Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia., Raimets R; Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia., Naudi S; Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia., Mänd M; Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia., Karise R; Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
Publikováno v:
Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2024 Dec 07; Vol. 289, pp. 117487. Date of Electronic Publication: 2024 Dec 07.
Autor:
Forbes, A. D.1 (AUTHOR) anthony.d.forbes@gmail.com, Rutherford, C. G.1 (AUTHOR)
Publikováno v:
Journal of Combinatorial Designs. Jan2022, Vol. 30 Issue 1, p48-70. 23p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pent K; Estonian University of Life Sciences, Tartu, Estonia., Naudi S; Estonian University of Life Sciences, Tartu, Estonia., Raimets R; Estonian University of Life Sciences, Tartu, Estonia., Jürison M; Estonian University of Life Sciences, Tartu, Estonia., Liiskmann E; Estonian University of Life Sciences, Tartu, Estonia., Karise R; Estonian University of Life Sciences, Tartu, Estonia.
Publikováno v:
Frontiers in physiology [Front Physiol] 2023 Jun 06; Vol. 14, pp. 1198070. Date of Electronic Publication: 2023 Jun 06 (Print Publication: 2023).
A generalized pentagonal geometry PENT($k$,$r$,$w$) is a partial linear space, where every line is incident with $k$ points, every point is incident with $r$ lines, and for each point, $x$, the set of points not collinear with $x$ forms the point set
Externí odkaz:
http://arxiv.org/abs/2111.13599
Autor:
Forbes, Anthony D.1 (AUTHOR) anthony.d.forbes@gmail.com
Publikováno v:
Journal of Combinatorial Designs. May2021, Vol. 29 Issue 5, p307-330. 24p.
Autor:
Zhang, Yan1,2 (AUTHOR) mgzhangyan@163.com, Cao, Yu1 (AUTHOR) yucao928@cqu.edu.cn, Huang, Guangjie1 (AUTHOR) gjhuang@cqu.edu.cn, Wang, Yanyang3 (AUTHOR) 18395577957@163.com, Li, Qilei1 (AUTHOR) m19132053328@163.com, He, Jie1 (AUTHOR)
Publikováno v:
Materials (1996-1944). Jul2023, Vol. 16 Issue 13, p4657. 16p.
Autor:
Aynalem, Tessema, Meng, Lifeng, Getachew, Awraris, Wu, Jiangli, Yu, Huimin, Tan, Jing, Li, Nannan, Xu, Shufa
Publikováno v:
Microorganisms; Feb2024, Vol. 12 Issue 2, p313, 13p
A pentagonal geometry PENT($k$, $r$) is a partial linear space, where every line is incident with $k$ points, every point is incident with $r$ lines, and for each point $x$, there is a line incident with precisely those points that are not collinear
Externí odkaz:
http://arxiv.org/abs/2104.02760
New results on pentagonal geometries PENT(k,r) with block sizes k = 3 or k = 4 are given. In particular we completely determine the existence spectra for PENT(3,r) systems with the maximum number of opposite line pairs as well as those without any op
Externí odkaz:
http://arxiv.org/abs/2007.10810